Neural network for image Fourier transform classification
Considers the performance of a neural-network (NN)-based visual control system with NNs of different types (multilayered perceptrons and Hamming nets). They discuss the possible compensation of disturbances arising in a coherent-optical processor by NN learning. Simulation shows that different NNs h...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Considers the performance of a neural-network (NN)-based visual control system with NNs of different types (multilayered perceptrons and Hamming nets). They discuss the possible compensation of disturbances arising in a coherent-optical processor by NN learning. Simulation shows that different NNs have different behaviors for two types of input distorted data: the perceptron NN is more suitable for compensation of optical tract errors while the winner-takes-all NN performs better for noise damaged input patterns.< > |
---|---|
DOI: | 10.1109/RNNS.1992.268593 |