Chaotic signal emulation using a recurrent time delay neural network
The authors describe a method for training a dispersive neural network to imitate a chaotic signal without using any knowledge of how the signal was generated. In a dispersive network, each connection has both an adaptable time delay and an adaptable weight. The network was first trained as a feedfo...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors describe a method for training a dispersive neural network to imitate a chaotic signal without using any knowledge of how the signal was generated. In a dispersive network, each connection has both an adaptable time delay and an adaptable weight. The network was first trained as a feedforward signal predictor and then connected recurrently for signal synthesis. The authors evaluate the performance of a network with twenty hidden nodes, using the Mackey-Glass (1977) chaotic time series as a training signal, and then compare it to a similar network without internal time delays. The fidelity of the synthesized signal is investigated for progressively longer training times, and for networks trained with and without momentum.< > |
---|---|
DOI: | 10.1109/NNSP.1992.253667 |