Representations of Borel Cayley graphs

It is shown that all degree-4 Borel Cayley graphs can also be represented by more restrictive chordal rings (CRs) through a constructive proof. All bidirectional, degree-4 Borel Cayley graphs have the more restrictive CR representations, and hence Hamiltonian cycles always exist for these graphs. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tang, K.W., Arden, B.W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that all degree-4 Borel Cayley graphs can also be represented by more restrictive chordal rings (CRs) through a constructive proof. All bidirectional, degree-4 Borel Cayley graphs have the more restrictive CR representations, and hence Hamiltonian cycles always exist for these graphs. A step-by-step algorithm to transform any degree-4 Borel Cayley graph into CR graphs is provided. Examples are used to illustrate this concept.< >
DOI:10.1109/FMPC.1992.234888