Cooccurrence smoothing for stochastic language modeling
Training corpora for stochastic language models are virtually always too small for maximum-likelihood estimation, so smoothing the models is of great importance. The authors derive the cooccurrence smoothing technique for stochastic language modeling and give experimental evidence for its validity....
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Training corpora for stochastic language models are virtually always too small for maximum-likelihood estimation, so smoothing the models is of great importance. The authors derive the cooccurrence smoothing technique for stochastic language modeling and give experimental evidence for its validity. Using word-bigram language models, cooccurrence smoothing improved the test-set perplexity by 14% on a German 100000-word text corpus and by 10% on an English 1-million word corpus.< > |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.1992.225947 |