Cooccurrence smoothing for stochastic language modeling

Training corpora for stochastic language models are virtually always too small for maximum-likelihood estimation, so smoothing the models is of great importance. The authors derive the cooccurrence smoothing technique for stochastic language modeling and give experimental evidence for its validity....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Essen, U., Steinbiss, V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Training corpora for stochastic language models are virtually always too small for maximum-likelihood estimation, so smoothing the models is of great importance. The authors derive the cooccurrence smoothing technique for stochastic language modeling and give experimental evidence for its validity. Using word-bigram language models, cooccurrence smoothing improved the test-set perplexity by 14% on a German 100000-word text corpus and by 10% on an English 1-million word corpus.< >
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.1992.225947