Minimax design of CMAC encoded neural network controllers using evolutionary programming

The authors describe the use of evolutionary programming for computer-aided design and testing of cerebellar model arithmetic computer (CMAC) encoded neural network regulators. The design and testing problem is viewed as a game in that the controller parameters are to be chosen with a minimax criter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sebald, A.V., Schlenzig, J., Fogel, D.B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors describe the use of evolutionary programming for computer-aided design and testing of cerebellar model arithmetic computer (CMAC) encoded neural network regulators. The design and testing problem is viewed as a game in that the controller parameters are to be chosen with a minimax criterion, i.e. to minimize the loss associated with their use on the worst possible plant parameters. The technique permits analysis of neural strategies against a set of plants. This gives both the best choice of control parameters and identification of the plant configuration which is most difficult for the best controller to handle.< >
ISSN:1058-6393
2576-2303
DOI:10.1109/ACSSC.1991.186509