Competitive algorithms for layered graph traversal
A layered graph is a connected, weighted graph whose vertices are partitioned into sets L/sub 0/=(s), L/sub 1/, L/sub 2/, . . ., and whose edges run between consecutive layers. Its width is max( mod L/sub i/ mod ). In the online layered graph traversal problem, a searcher starts at s in a layered gr...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A layered graph is a connected, weighted graph whose vertices are partitioned into sets L/sub 0/=(s), L/sub 1/, L/sub 2/, . . ., and whose edges run between consecutive layers. Its width is max( mod L/sub i/ mod ). In the online layered graph traversal problem, a searcher starts at s in a layered graph of unknown width and tries to reach a target vertex t; however, the vertices in layer i and the edges between layers i-1 and i are only revealed when the searcher reaches layer i-1. The authors give upper and lower bounds on the competitive ratio of layered graph traversal algorithms. They give a deterministic online algorithm that is O(9w)-competitive on width-w graphs and prove that for no w can a deterministic online algorithm have a competitive ratio better than 2w/sup -2/ on width-w graphs. They prove that for all w, w/2 is a lower bound on the competitive ratio of any randomized online layered graph traversal algorithm. For traversing layered graphs consisting of w disjoint paths tied together at a common source, they give a randomized online algorithm with a competitive ratio of O(log w) and prove that this is optimal up to a constant factor.< > |
---|---|
DOI: | 10.1109/SFCS.1991.185381 |