A Weighted Voting and Sequential Combination of Classifiers Scheme for Human Face Recognition

In this paper, we examine the performance of a weighted voting classification strategy for human face recognition. Here, local template matching is used, but instead of summing the local distance measures, a weighted voting scheme based on rank information is used to combine the results of the local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiaoyan Mu, Watta, P., Hassoun, M.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we examine the performance of a weighted voting classification strategy for human face recognition. Here, local template matching is used, but instead of summing the local distance measures, a weighted voting scheme based on rank information is used to combine the results of the local classifiers. This strategy can be used with any suitable features; for example, simple pixel features, or Gabor features, etc. If multiple features are available, we show how a sequential combination strategy can be devised to efficiently and reliably compute the final classifier output. Test results are presented for the problem of human face recognition on a large database of faces.
ISSN:2161-4393
2161-4407
DOI:10.1109/IJCNN.2006.246892