Knowledge Representation and Possible Worlds for Neural Networks

The semantics of neural networks can be analyzed mathematically as a distributed system of knowledge and as systems of possible worlds expressed in the knowledge. Learning in a neural network can be analyzed as an attempt to acquire a representation of knowledge. We express the knowledge system, sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Healy, M.J., Caudell, T.P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The semantics of neural networks can be analyzed mathematically as a distributed system of knowledge and as systems of possible worlds expressed in the knowledge. Learning in a neural network can be analyzed as an attempt to acquire a representation of knowledge. We express the knowledge system, systems of possible worlds, and neural architectures at different stages of learning as categories. Diagrammatic constructs express learning in terms of pre-existing knowledge representations. Functors express structure-preserving associations between the categories. This analysis provides a mathematical vehicle for understanding connectionist systems and yields design principles for advancing the state of the art.
ISSN:2161-4393
2161-4407
DOI:10.1109/IJCNN.2006.247264