Support Vector Clustering Applied to Digital Communications
Support vector clustering (SVC) is a recently proposed clustering methodology with promising performance for high-dimensional and noisy datasets, and for clusters with arbitrary shape. This work addresses the application of SVC, a kernel-based method, in a context in which the channel equalization p...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Support vector clustering (SVC) is a recently proposed clustering methodology with promising performance for high-dimensional and noisy datasets, and for clusters with arbitrary shape. This work addresses the application of SVC, a kernel-based method, in a context in which the channel equalization problem is conceived as a clustering task. The main challenge, in this case, is to perform unsupervised clustering aiming at the design of an optimal Bayesian or a blind prediction-based receiver without resorting to a priori information about the transmission medium. The proposed technique employs a two-stage procedure -a combination between the use of SVC to obtain a first set of clusters and an auxiliary heuristic to help separating eventual multiple clouds contained in a single cluster and attribute centers to them via an iterated local search (ILS) algorithm. The obtained results indicate that kernel methods can be successfully applied to the field of signal processing. |
---|---|
ISSN: | 2161-4393 2161-4407 |
DOI: | 10.1109/IJCNN.2006.246631 |