Intensity Noise Distribution of Semiconductor Lasers Measured Using Bit-Error-Rate Testers
Laser noise has been well studied both theoretically and experimentally. Most of the previous experimental work examined the standard deviation of the noise, with the implicit assumption of a Gaussian noise distribution. We employ a new approach to measure the semiconductor laser noise distribution...
Gespeichert in:
Veröffentlicht in: | IEEE photonics technology letters 2006-10, Vol.18 (19), p.2059-2061 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2061 |
---|---|
container_issue | 19 |
container_start_page | 2059 |
container_title | IEEE photonics technology letters |
container_volume | 18 |
creator | Kuo-Liang Chen Wang, C. Wilks, J. |
description | Laser noise has been well studied both theoretically and experimentally. Most of the previous experimental work examined the standard deviation of the noise, with the implicit assumption of a Gaussian noise distribution. We employ a new approach to measure the semiconductor laser noise distribution down to a bit-error ratio (BER) of 10 -11 . This method takes advantage of the high sampling rate of modern BER testers. We found that the noise distribution for a 1310-nm Fabry-Perot laser and a 1550-nm distributed-feedback laser are well fitted by Gaussian distributions |
doi_str_mv | 10.1109/LPT.2006.883255 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1703635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1703635</ieee_id><sourcerecordid>2346208321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-87c8246c4c130076600736d5bbd255fd5bf3e98919d5786c474b13c58b87a08c3</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EEqUwM7BYLExpr-PYcUYoBSqFh6BdWKzEcZCrNi62M_Tf4ypISCz3nuE793EQuiQwIQSKafm2nKQAfCIETRk7QiNSZCQBkmfHUUPUhFB2is68XwOQjNFshD4XXdCdN2GPX6zxGt8bH5yp-2Bsh22LP_TWKNs1vQrW4bLy2nn8rCvfO93glTfdF74zIZk7Z13yXgWNl9qHSJ2jk7baeH3x28do9TBfzp6S8vVxMbstE0VTCInIlUgzrjJFKEDOeSyUN6yum_hGG0VLdSEKUjQsF5HLs5pQxUQt8gqEomN0M8zdOfvdx91ya7zSm03Vadt7KQqeAsuBRvL6H7m2vevicVJwThlnwCI0HSDlrPdOt3LnzLZye0lAHpKWMWl5SFoOSUfH1eAwWus_Om6MM-kP_P14xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866356505</pqid></control><display><type>article</type><title>Intensity Noise Distribution of Semiconductor Lasers Measured Using Bit-Error-Rate Testers</title><source>IEEE Electronic Library (IEL)</source><creator>Kuo-Liang Chen ; Wang, C. ; Wilks, J.</creator><creatorcontrib>Kuo-Liang Chen ; Wang, C. ; Wilks, J.</creatorcontrib><description>Laser noise has been well studied both theoretically and experimentally. Most of the previous experimental work examined the standard deviation of the noise, with the implicit assumption of a Gaussian noise distribution. We employ a new approach to measure the semiconductor laser noise distribution down to a bit-error ratio (BER) of 10 -11 . This method takes advantage of the high sampling rate of modern BER testers. We found that the noise distribution for a 1310-nm Fabry-Perot laser and a 1550-nm distributed-feedback laser are well fitted by Gaussian distributions</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2006.883255</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bit error rate ; Fabry-Perot ; Gaussian ; Gaussian noise ; Laser modes ; Laser noise ; Laser theory ; Lasers ; Noise ; Noise measurement ; optical fiber communication ; Photonics ; probability ; Sampling ; Semiconductor device noise ; Semiconductor device testing ; Semiconductor lasers ; Signal to noise ratio ; Standard deviation</subject><ispartof>IEEE photonics technology letters, 2006-10, Vol.18 (19), p.2059-2061</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-87c8246c4c130076600736d5bbd255fd5bf3e98919d5786c474b13c58b87a08c3</citedby><cites>FETCH-LOGICAL-c320t-87c8246c4c130076600736d5bbd255fd5bf3e98919d5786c474b13c58b87a08c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1703635$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1703635$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuo-Liang Chen</creatorcontrib><creatorcontrib>Wang, C.</creatorcontrib><creatorcontrib>Wilks, J.</creatorcontrib><title>Intensity Noise Distribution of Semiconductor Lasers Measured Using Bit-Error-Rate Testers</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>Laser noise has been well studied both theoretically and experimentally. Most of the previous experimental work examined the standard deviation of the noise, with the implicit assumption of a Gaussian noise distribution. We employ a new approach to measure the semiconductor laser noise distribution down to a bit-error ratio (BER) of 10 -11 . This method takes advantage of the high sampling rate of modern BER testers. We found that the noise distribution for a 1310-nm Fabry-Perot laser and a 1550-nm distributed-feedback laser are well fitted by Gaussian distributions</description><subject>Bit error rate</subject><subject>Fabry-Perot</subject><subject>Gaussian</subject><subject>Gaussian noise</subject><subject>Laser modes</subject><subject>Laser noise</subject><subject>Laser theory</subject><subject>Lasers</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>optical fiber communication</subject><subject>Photonics</subject><subject>probability</subject><subject>Sampling</subject><subject>Semiconductor device noise</subject><subject>Semiconductor device testing</subject><subject>Semiconductor lasers</subject><subject>Signal to noise ratio</subject><subject>Standard deviation</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDtPwzAUhS0EEqUwM7BYLExpr-PYcUYoBSqFh6BdWKzEcZCrNi62M_Tf4ypISCz3nuE793EQuiQwIQSKafm2nKQAfCIETRk7QiNSZCQBkmfHUUPUhFB2is68XwOQjNFshD4XXdCdN2GPX6zxGt8bH5yp-2Bsh22LP_TWKNs1vQrW4bLy2nn8rCvfO93glTfdF74zIZk7Z13yXgWNl9qHSJ2jk7baeH3x28do9TBfzp6S8vVxMbstE0VTCInIlUgzrjJFKEDOeSyUN6yum_hGG0VLdSEKUjQsF5HLs5pQxUQt8gqEomN0M8zdOfvdx91ya7zSm03Vadt7KQqeAsuBRvL6H7m2vevicVJwThlnwCI0HSDlrPdOt3LnzLZye0lAHpKWMWl5SFoOSUfH1eAwWus_Om6MM-kP_P14xw</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Kuo-Liang Chen</creator><creator>Wang, C.</creator><creator>Wilks, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20061001</creationdate><title>Intensity Noise Distribution of Semiconductor Lasers Measured Using Bit-Error-Rate Testers</title><author>Kuo-Liang Chen ; Wang, C. ; Wilks, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-87c8246c4c130076600736d5bbd255fd5bf3e98919d5786c474b13c58b87a08c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bit error rate</topic><topic>Fabry-Perot</topic><topic>Gaussian</topic><topic>Gaussian noise</topic><topic>Laser modes</topic><topic>Laser noise</topic><topic>Laser theory</topic><topic>Lasers</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>optical fiber communication</topic><topic>Photonics</topic><topic>probability</topic><topic>Sampling</topic><topic>Semiconductor device noise</topic><topic>Semiconductor device testing</topic><topic>Semiconductor lasers</topic><topic>Signal to noise ratio</topic><topic>Standard deviation</topic><toplevel>online_resources</toplevel><creatorcontrib>Kuo-Liang Chen</creatorcontrib><creatorcontrib>Wang, C.</creatorcontrib><creatorcontrib>Wilks, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuo-Liang Chen</au><au>Wang, C.</au><au>Wilks, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intensity Noise Distribution of Semiconductor Lasers Measured Using Bit-Error-Rate Testers</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2006-10-01</date><risdate>2006</risdate><volume>18</volume><issue>19</issue><spage>2059</spage><epage>2061</epage><pages>2059-2061</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>Laser noise has been well studied both theoretically and experimentally. Most of the previous experimental work examined the standard deviation of the noise, with the implicit assumption of a Gaussian noise distribution. We employ a new approach to measure the semiconductor laser noise distribution down to a bit-error ratio (BER) of 10 -11 . This method takes advantage of the high sampling rate of modern BER testers. We found that the noise distribution for a 1310-nm Fabry-Perot laser and a 1550-nm distributed-feedback laser are well fitted by Gaussian distributions</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LPT.2006.883255</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-1135 |
ispartof | IEEE photonics technology letters, 2006-10, Vol.18 (19), p.2059-2061 |
issn | 1041-1135 1941-0174 |
language | eng |
recordid | cdi_ieee_primary_1703635 |
source | IEEE Electronic Library (IEL) |
subjects | Bit error rate Fabry-Perot Gaussian Gaussian noise Laser modes Laser noise Laser theory Lasers Noise Noise measurement optical fiber communication Photonics probability Sampling Semiconductor device noise Semiconductor device testing Semiconductor lasers Signal to noise ratio Standard deviation |
title | Intensity Noise Distribution of Semiconductor Lasers Measured Using Bit-Error-Rate Testers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intensity%20Noise%20Distribution%20of%20Semiconductor%20Lasers%20Measured%20Using%20Bit-Error-Rate%20Testers&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Kuo-Liang%20Chen&rft.date=2006-10-01&rft.volume=18&rft.issue=19&rft.spage=2059&rft.epage=2061&rft.pages=2059-2061&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2006.883255&rft_dat=%3Cproquest_RIE%3E2346208321%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866356505&rft_id=info:pmid/&rft_ieee_id=1703635&rfr_iscdi=true |