Intensity Noise Distribution of Semiconductor Lasers Measured Using Bit-Error-Rate Testers

Laser noise has been well studied both theoretically and experimentally. Most of the previous experimental work examined the standard deviation of the noise, with the implicit assumption of a Gaussian noise distribution. We employ a new approach to measure the semiconductor laser noise distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics technology letters 2006-10, Vol.18 (19), p.2059-2061
Hauptverfasser: Kuo-Liang Chen, Wang, C., Wilks, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2061
container_issue 19
container_start_page 2059
container_title IEEE photonics technology letters
container_volume 18
creator Kuo-Liang Chen
Wang, C.
Wilks, J.
description Laser noise has been well studied both theoretically and experimentally. Most of the previous experimental work examined the standard deviation of the noise, with the implicit assumption of a Gaussian noise distribution. We employ a new approach to measure the semiconductor laser noise distribution down to a bit-error ratio (BER) of 10 -11 . This method takes advantage of the high sampling rate of modern BER testers. We found that the noise distribution for a 1310-nm Fabry-Perot laser and a 1550-nm distributed-feedback laser are well fitted by Gaussian distributions
doi_str_mv 10.1109/LPT.2006.883255
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1703635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1703635</ieee_id><sourcerecordid>2346208321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-87c8246c4c130076600736d5bbd255fd5bf3e98919d5786c474b13c58b87a08c3</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EEqUwM7BYLExpr-PYcUYoBSqFh6BdWKzEcZCrNi62M_Tf4ypISCz3nuE793EQuiQwIQSKafm2nKQAfCIETRk7QiNSZCQBkmfHUUPUhFB2is68XwOQjNFshD4XXdCdN2GPX6zxGt8bH5yp-2Bsh22LP_TWKNs1vQrW4bLy2nn8rCvfO93glTfdF74zIZk7Z13yXgWNl9qHSJ2jk7baeH3x28do9TBfzp6S8vVxMbstE0VTCInIlUgzrjJFKEDOeSyUN6yum_hGG0VLdSEKUjQsF5HLs5pQxUQt8gqEomN0M8zdOfvdx91ya7zSm03Vadt7KQqeAsuBRvL6H7m2vevicVJwThlnwCI0HSDlrPdOt3LnzLZye0lAHpKWMWl5SFoOSUfH1eAwWus_Om6MM-kP_P14xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866356505</pqid></control><display><type>article</type><title>Intensity Noise Distribution of Semiconductor Lasers Measured Using Bit-Error-Rate Testers</title><source>IEEE Electronic Library (IEL)</source><creator>Kuo-Liang Chen ; Wang, C. ; Wilks, J.</creator><creatorcontrib>Kuo-Liang Chen ; Wang, C. ; Wilks, J.</creatorcontrib><description>Laser noise has been well studied both theoretically and experimentally. Most of the previous experimental work examined the standard deviation of the noise, with the implicit assumption of a Gaussian noise distribution. We employ a new approach to measure the semiconductor laser noise distribution down to a bit-error ratio (BER) of 10 -11 . This method takes advantage of the high sampling rate of modern BER testers. We found that the noise distribution for a 1310-nm Fabry-Perot laser and a 1550-nm distributed-feedback laser are well fitted by Gaussian distributions</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2006.883255</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bit error rate ; Fabry-Perot ; Gaussian ; Gaussian noise ; Laser modes ; Laser noise ; Laser theory ; Lasers ; Noise ; Noise measurement ; optical fiber communication ; Photonics ; probability ; Sampling ; Semiconductor device noise ; Semiconductor device testing ; Semiconductor lasers ; Signal to noise ratio ; Standard deviation</subject><ispartof>IEEE photonics technology letters, 2006-10, Vol.18 (19), p.2059-2061</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-87c8246c4c130076600736d5bbd255fd5bf3e98919d5786c474b13c58b87a08c3</citedby><cites>FETCH-LOGICAL-c320t-87c8246c4c130076600736d5bbd255fd5bf3e98919d5786c474b13c58b87a08c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1703635$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1703635$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuo-Liang Chen</creatorcontrib><creatorcontrib>Wang, C.</creatorcontrib><creatorcontrib>Wilks, J.</creatorcontrib><title>Intensity Noise Distribution of Semiconductor Lasers Measured Using Bit-Error-Rate Testers</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>Laser noise has been well studied both theoretically and experimentally. Most of the previous experimental work examined the standard deviation of the noise, with the implicit assumption of a Gaussian noise distribution. We employ a new approach to measure the semiconductor laser noise distribution down to a bit-error ratio (BER) of 10 -11 . This method takes advantage of the high sampling rate of modern BER testers. We found that the noise distribution for a 1310-nm Fabry-Perot laser and a 1550-nm distributed-feedback laser are well fitted by Gaussian distributions</description><subject>Bit error rate</subject><subject>Fabry-Perot</subject><subject>Gaussian</subject><subject>Gaussian noise</subject><subject>Laser modes</subject><subject>Laser noise</subject><subject>Laser theory</subject><subject>Lasers</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>optical fiber communication</subject><subject>Photonics</subject><subject>probability</subject><subject>Sampling</subject><subject>Semiconductor device noise</subject><subject>Semiconductor device testing</subject><subject>Semiconductor lasers</subject><subject>Signal to noise ratio</subject><subject>Standard deviation</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDtPwzAUhS0EEqUwM7BYLExpr-PYcUYoBSqFh6BdWKzEcZCrNi62M_Tf4ypISCz3nuE793EQuiQwIQSKafm2nKQAfCIETRk7QiNSZCQBkmfHUUPUhFB2is68XwOQjNFshD4XXdCdN2GPX6zxGt8bH5yp-2Bsh22LP_TWKNs1vQrW4bLy2nn8rCvfO93glTfdF74zIZk7Z13yXgWNl9qHSJ2jk7baeH3x28do9TBfzp6S8vVxMbstE0VTCInIlUgzrjJFKEDOeSyUN6yum_hGG0VLdSEKUjQsF5HLs5pQxUQt8gqEomN0M8zdOfvdx91ya7zSm03Vadt7KQqeAsuBRvL6H7m2vevicVJwThlnwCI0HSDlrPdOt3LnzLZye0lAHpKWMWl5SFoOSUfH1eAwWus_Om6MM-kP_P14xw</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Kuo-Liang Chen</creator><creator>Wang, C.</creator><creator>Wilks, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20061001</creationdate><title>Intensity Noise Distribution of Semiconductor Lasers Measured Using Bit-Error-Rate Testers</title><author>Kuo-Liang Chen ; Wang, C. ; Wilks, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-87c8246c4c130076600736d5bbd255fd5bf3e98919d5786c474b13c58b87a08c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bit error rate</topic><topic>Fabry-Perot</topic><topic>Gaussian</topic><topic>Gaussian noise</topic><topic>Laser modes</topic><topic>Laser noise</topic><topic>Laser theory</topic><topic>Lasers</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>optical fiber communication</topic><topic>Photonics</topic><topic>probability</topic><topic>Sampling</topic><topic>Semiconductor device noise</topic><topic>Semiconductor device testing</topic><topic>Semiconductor lasers</topic><topic>Signal to noise ratio</topic><topic>Standard deviation</topic><toplevel>online_resources</toplevel><creatorcontrib>Kuo-Liang Chen</creatorcontrib><creatorcontrib>Wang, C.</creatorcontrib><creatorcontrib>Wilks, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuo-Liang Chen</au><au>Wang, C.</au><au>Wilks, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intensity Noise Distribution of Semiconductor Lasers Measured Using Bit-Error-Rate Testers</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2006-10-01</date><risdate>2006</risdate><volume>18</volume><issue>19</issue><spage>2059</spage><epage>2061</epage><pages>2059-2061</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>Laser noise has been well studied both theoretically and experimentally. Most of the previous experimental work examined the standard deviation of the noise, with the implicit assumption of a Gaussian noise distribution. We employ a new approach to measure the semiconductor laser noise distribution down to a bit-error ratio (BER) of 10 -11 . This method takes advantage of the high sampling rate of modern BER testers. We found that the noise distribution for a 1310-nm Fabry-Perot laser and a 1550-nm distributed-feedback laser are well fitted by Gaussian distributions</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LPT.2006.883255</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-1135
ispartof IEEE photonics technology letters, 2006-10, Vol.18 (19), p.2059-2061
issn 1041-1135
1941-0174
language eng
recordid cdi_ieee_primary_1703635
source IEEE Electronic Library (IEL)
subjects Bit error rate
Fabry-Perot
Gaussian
Gaussian noise
Laser modes
Laser noise
Laser theory
Lasers
Noise
Noise measurement
optical fiber communication
Photonics
probability
Sampling
Semiconductor device noise
Semiconductor device testing
Semiconductor lasers
Signal to noise ratio
Standard deviation
title Intensity Noise Distribution of Semiconductor Lasers Measured Using Bit-Error-Rate Testers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intensity%20Noise%20Distribution%20of%20Semiconductor%20Lasers%20Measured%20Using%20Bit-Error-Rate%20Testers&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Kuo-Liang%20Chen&rft.date=2006-10-01&rft.volume=18&rft.issue=19&rft.spage=2059&rft.epage=2061&rft.pages=2059-2061&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2006.883255&rft_dat=%3Cproquest_RIE%3E2346208321%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866356505&rft_id=info:pmid/&rft_ieee_id=1703635&rfr_iscdi=true