A Hybrid HMM-Based Speech Recognizer Using Kernel-Based Discriminants as Acoustic Models
In this paper, we propose a novel order-recursive training algorithm for kernel-based discriminants which is computationally efficient. We integrate this method in a hybrid HMM-based speech recognition system by translating the outputs of the kernel-based classifier into class-conditional probabilit...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a novel order-recursive training algorithm for kernel-based discriminants which is computationally efficient. We integrate this method in a hybrid HMM-based speech recognition system by translating the outputs of the kernel-based classifier into class-conditional probabilities and using them instead of Gaussian mixtures as production probabilities of a HMM-based decoder for speech recognition. The performance of the described hybrid structure is demonstrated on the DARPA resource management (RMI) corpus |
---|---|
ISSN: | 1051-4651 2831-7475 |
DOI: | 10.1109/ICPR.2006.82 |