Car/Non-Car Classification in an Informative Sample Subspace
In this paper, we present a method for data classification with application to car/non-car objects. We first developed a sample based car/non-car maximal mutual information low dimensional subspace. We then trained a support vector machine (SVM) in this subspace for the detection of cars. Using publ...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 965 |
---|---|
container_issue | |
container_start_page | 962 |
container_title | |
container_volume | 2 |
creator | Jianzhong Fang Guoping Qiu |
description | In this paper, we present a method for data classification with application to car/non-car objects. We first developed a sample based car/non-car maximal mutual information low dimensional subspace. We then trained a support vector machine (SVM) in this subspace for the detection of cars. Using publicly available standard training and testing data sets, we demonstrated that our car detector gave very competitive performances |
doi_str_mv | 10.1109/ICPR.2006.356 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1699366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1699366</ieee_id><sourcerecordid>1699366</sourcerecordid><originalsourceid>FETCH-LOGICAL-i214t-93b729fc7d1ae166e867a4d1eb126a0bc4ce6f689bdcf9c5a19e2c4710fe65c63</originalsourceid><addsrcrecordid>eNotzEtLxDAUhuHgBRzHWbpy0z_QTk4uJw24keJoYVDxsh5O0wQivdGMgv_egn6bB77Fy9g18AKA221dvbwWgnMspMYTthKlhNwoo0_ZJTdotdAC-BlbAdeQK9RwwTYpffJlSmsl7IrdVjRvn8YhX8yqjlKKITo6xnHI4pDRkNVDGOd-eb599kb91C18NWki56_YeaAu-c2_a_axu3-vHvP980Nd3e3zKEAdcysbI2xwpgXygOhLNKRa8A0IJN445TwGLG3TumCdJrBeOGWAB4_aoVyzm79u9N4fpjn2NP8cAK2ViPIXRnVJFg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Car/Non-Car Classification in an Informative Sample Subspace</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jianzhong Fang ; Guoping Qiu</creator><creatorcontrib>Jianzhong Fang ; Guoping Qiu</creatorcontrib><description>In this paper, we present a method for data classification with application to car/non-car objects. We first developed a sample based car/non-car maximal mutual information low dimensional subspace. We then trained a support vector machine (SVM) in this subspace for the detection of cars. Using publicly available standard training and testing data sets, we demonstrated that our car detector gave very competitive performances</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769525210</identifier><identifier>ISBN: 9780769525211</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2006.356</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Image databases ; Information technology ; Mutual information ; Object detection ; Performance evaluation ; Pixel ; Support vector machine classification ; Support vector machines ; Testing</subject><ispartof>18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.2, p.962-965</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1699366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1699366$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jianzhong Fang</creatorcontrib><creatorcontrib>Guoping Qiu</creatorcontrib><title>Car/Non-Car Classification in an Informative Sample Subspace</title><title>18th International Conference on Pattern Recognition (ICPR'06)</title><addtitle>ICPR</addtitle><description>In this paper, we present a method for data classification with application to car/non-car objects. We first developed a sample based car/non-car maximal mutual information low dimensional subspace. We then trained a support vector machine (SVM) in this subspace for the detection of cars. Using publicly available standard training and testing data sets, we demonstrated that our car detector gave very competitive performances</description><subject>Computer science</subject><subject>Image databases</subject><subject>Information technology</subject><subject>Mutual information</subject><subject>Object detection</subject><subject>Performance evaluation</subject><subject>Pixel</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Testing</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769525210</isbn><isbn>9780769525211</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzEtLxDAUhuHgBRzHWbpy0z_QTk4uJw24keJoYVDxsh5O0wQivdGMgv_egn6bB77Fy9g18AKA221dvbwWgnMspMYTthKlhNwoo0_ZJTdotdAC-BlbAdeQK9RwwTYpffJlSmsl7IrdVjRvn8YhX8yqjlKKITo6xnHI4pDRkNVDGOd-eb599kb91C18NWki56_YeaAu-c2_a_axu3-vHvP980Nd3e3zKEAdcysbI2xwpgXygOhLNKRa8A0IJN445TwGLG3TumCdJrBeOGWAB4_aoVyzm79u9N4fpjn2NP8cAK2ViPIXRnVJFg</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Jianzhong Fang</creator><creator>Guoping Qiu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Car/Non-Car Classification in an Informative Sample Subspace</title><author>Jianzhong Fang ; Guoping Qiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i214t-93b729fc7d1ae166e867a4d1eb126a0bc4ce6f689bdcf9c5a19e2c4710fe65c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computer science</topic><topic>Image databases</topic><topic>Information technology</topic><topic>Mutual information</topic><topic>Object detection</topic><topic>Performance evaluation</topic><topic>Pixel</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Jianzhong Fang</creatorcontrib><creatorcontrib>Guoping Qiu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jianzhong Fang</au><au>Guoping Qiu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Car/Non-Car Classification in an Informative Sample Subspace</atitle><btitle>18th International Conference on Pattern Recognition (ICPR'06)</btitle><stitle>ICPR</stitle><date>2006</date><risdate>2006</risdate><volume>2</volume><spage>962</spage><epage>965</epage><pages>962-965</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769525210</isbn><isbn>9780769525211</isbn><abstract>In this paper, we present a method for data classification with application to car/non-car objects. We first developed a sample based car/non-car maximal mutual information low dimensional subspace. We then trained a support vector machine (SVM) in this subspace for the detection of cars. Using publicly available standard training and testing data sets, we demonstrated that our car detector gave very competitive performances</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2006.356</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | 18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.2, p.962-965 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_1699366 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer science Image databases Information technology Mutual information Object detection Performance evaluation Pixel Support vector machine classification Support vector machines Testing |
title | Car/Non-Car Classification in an Informative Sample Subspace |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Car/Non-Car%20Classification%20in%20an%20Informative%20Sample%20Subspace&rft.btitle=18th%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR'06)&rft.au=Jianzhong%20Fang&rft.date=2006&rft.volume=2&rft.spage=962&rft.epage=965&rft.pages=962-965&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769525210&rft.isbn_list=9780769525211&rft_id=info:doi/10.1109/ICPR.2006.356&rft_dat=%3Cieee_6IE%3E1699366%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1699366&rfr_iscdi=true |