Car/Non-Car Classification in an Informative Sample Subspace

In this paper, we present a method for data classification with application to car/non-car objects. We first developed a sample based car/non-car maximal mutual information low dimensional subspace. We then trained a support vector machine (SVM) in this subspace for the detection of cars. Using publ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jianzhong Fang, Guoping Qiu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 965
container_issue
container_start_page 962
container_title
container_volume 2
creator Jianzhong Fang
Guoping Qiu
description In this paper, we present a method for data classification with application to car/non-car objects. We first developed a sample based car/non-car maximal mutual information low dimensional subspace. We then trained a support vector machine (SVM) in this subspace for the detection of cars. Using publicly available standard training and testing data sets, we demonstrated that our car detector gave very competitive performances
doi_str_mv 10.1109/ICPR.2006.356
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1699366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1699366</ieee_id><sourcerecordid>1699366</sourcerecordid><originalsourceid>FETCH-LOGICAL-i214t-93b729fc7d1ae166e867a4d1eb126a0bc4ce6f689bdcf9c5a19e2c4710fe65c63</originalsourceid><addsrcrecordid>eNotzEtLxDAUhuHgBRzHWbpy0z_QTk4uJw24keJoYVDxsh5O0wQivdGMgv_egn6bB77Fy9g18AKA221dvbwWgnMspMYTthKlhNwoo0_ZJTdotdAC-BlbAdeQK9RwwTYpffJlSmsl7IrdVjRvn8YhX8yqjlKKITo6xnHI4pDRkNVDGOd-eb599kb91C18NWki56_YeaAu-c2_a_axu3-vHvP980Nd3e3zKEAdcysbI2xwpgXygOhLNKRa8A0IJN445TwGLG3TumCdJrBeOGWAB4_aoVyzm79u9N4fpjn2NP8cAK2ViPIXRnVJFg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Car/Non-Car Classification in an Informative Sample Subspace</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jianzhong Fang ; Guoping Qiu</creator><creatorcontrib>Jianzhong Fang ; Guoping Qiu</creatorcontrib><description>In this paper, we present a method for data classification with application to car/non-car objects. We first developed a sample based car/non-car maximal mutual information low dimensional subspace. We then trained a support vector machine (SVM) in this subspace for the detection of cars. Using publicly available standard training and testing data sets, we demonstrated that our car detector gave very competitive performances</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769525210</identifier><identifier>ISBN: 9780769525211</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2006.356</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Image databases ; Information technology ; Mutual information ; Object detection ; Performance evaluation ; Pixel ; Support vector machine classification ; Support vector machines ; Testing</subject><ispartof>18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.2, p.962-965</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1699366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1699366$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jianzhong Fang</creatorcontrib><creatorcontrib>Guoping Qiu</creatorcontrib><title>Car/Non-Car Classification in an Informative Sample Subspace</title><title>18th International Conference on Pattern Recognition (ICPR'06)</title><addtitle>ICPR</addtitle><description>In this paper, we present a method for data classification with application to car/non-car objects. We first developed a sample based car/non-car maximal mutual information low dimensional subspace. We then trained a support vector machine (SVM) in this subspace for the detection of cars. Using publicly available standard training and testing data sets, we demonstrated that our car detector gave very competitive performances</description><subject>Computer science</subject><subject>Image databases</subject><subject>Information technology</subject><subject>Mutual information</subject><subject>Object detection</subject><subject>Performance evaluation</subject><subject>Pixel</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Testing</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769525210</isbn><isbn>9780769525211</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzEtLxDAUhuHgBRzHWbpy0z_QTk4uJw24keJoYVDxsh5O0wQivdGMgv_egn6bB77Fy9g18AKA221dvbwWgnMspMYTthKlhNwoo0_ZJTdotdAC-BlbAdeQK9RwwTYpffJlSmsl7IrdVjRvn8YhX8yqjlKKITo6xnHI4pDRkNVDGOd-eb599kb91C18NWki56_YeaAu-c2_a_axu3-vHvP980Nd3e3zKEAdcysbI2xwpgXygOhLNKRa8A0IJN445TwGLG3TumCdJrBeOGWAB4_aoVyzm79u9N4fpjn2NP8cAK2ViPIXRnVJFg</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Jianzhong Fang</creator><creator>Guoping Qiu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Car/Non-Car Classification in an Informative Sample Subspace</title><author>Jianzhong Fang ; Guoping Qiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i214t-93b729fc7d1ae166e867a4d1eb126a0bc4ce6f689bdcf9c5a19e2c4710fe65c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computer science</topic><topic>Image databases</topic><topic>Information technology</topic><topic>Mutual information</topic><topic>Object detection</topic><topic>Performance evaluation</topic><topic>Pixel</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Jianzhong Fang</creatorcontrib><creatorcontrib>Guoping Qiu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jianzhong Fang</au><au>Guoping Qiu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Car/Non-Car Classification in an Informative Sample Subspace</atitle><btitle>18th International Conference on Pattern Recognition (ICPR'06)</btitle><stitle>ICPR</stitle><date>2006</date><risdate>2006</risdate><volume>2</volume><spage>962</spage><epage>965</epage><pages>962-965</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769525210</isbn><isbn>9780769525211</isbn><abstract>In this paper, we present a method for data classification with application to car/non-car objects. We first developed a sample based car/non-car maximal mutual information low dimensional subspace. We then trained a support vector machine (SVM) in this subspace for the detection of cars. Using publicly available standard training and testing data sets, we demonstrated that our car detector gave very competitive performances</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2006.356</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.2, p.962-965
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_1699366
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Image databases
Information technology
Mutual information
Object detection
Performance evaluation
Pixel
Support vector machine classification
Support vector machines
Testing
title Car/Non-Car Classification in an Informative Sample Subspace
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Car/Non-Car%20Classification%20in%20an%20Informative%20Sample%20Subspace&rft.btitle=18th%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR'06)&rft.au=Jianzhong%20Fang&rft.date=2006&rft.volume=2&rft.spage=962&rft.epage=965&rft.pages=962-965&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769525210&rft.isbn_list=9780769525211&rft_id=info:doi/10.1109/ICPR.2006.356&rft_dat=%3Cieee_6IE%3E1699366%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1699366&rfr_iscdi=true