Car/Non-Car Classification in an Informative Sample Subspace

In this paper, we present a method for data classification with application to car/non-car objects. We first developed a sample based car/non-car maximal mutual information low dimensional subspace. We then trained a support vector machine (SVM) in this subspace for the detection of cars. Using publ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jianzhong Fang, Guoping Qiu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a method for data classification with application to car/non-car objects. We first developed a sample based car/non-car maximal mutual information low dimensional subspace. We then trained a support vector machine (SVM) in this subspace for the detection of cars. Using publicly available standard training and testing data sets, we demonstrated that our car detector gave very competitive performances
ISSN:1051-4651
2831-7475
DOI:10.1109/ICPR.2006.356