A General Framework for Agglomerative Hierarchical Clustering Algorithms

This paper presents a general framework for agglomerative hierarchical clustering based on graphs. Different hierarchical agglomerative clustering algorithms can be obtained from this framework, by specifying an inter-cluster similarity measure, a subgraph of the 13-similarity graph, and a cover rou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gil-Garcia, R., Badia-Contelles, J.M., Pons-Porrata, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a general framework for agglomerative hierarchical clustering based on graphs. Different hierarchical agglomerative clustering algorithms can be obtained from this framework, by specifying an inter-cluster similarity measure, a subgraph of the 13-similarity graph, and a cover routine. We also describe two methods obtained from this framework called hierarchical compact algorithm and hierarchical star algorithm. These algorithms have been evaluated using standard document collections. The experimental results show that our methods are faster and obtain smaller hierarchies than traditional hierarchical algorithms while achieving a similar clustering quality
ISSN:1051-4651
2831-7475
DOI:10.1109/ICPR.2006.69