Nanostenciling of Functional Materials by Room Temperature Pulsed Laser Deposition
We present how various features drawn in a miniature shadow mask (nanostencil) can be efficiently transferred to a surface in the form of three-dimensional nanostructures of metals (Pt, Cr), semiconductors (Ge), and complex oxides (e.g., BaTiO 3 ) by room temperature pulsed laser deposition. Selecti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2006-09, Vol.5 (5), p.470-477 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 477 |
---|---|
container_issue | 5 |
container_start_page | 470 |
container_title | IEEE transactions on nanotechnology |
container_volume | 5 |
creator | Cojocaru, C.V. Harnagea, C. Pignolet, A. Rosei, F. |
description | We present how various features drawn in a miniature shadow mask (nanostencil) can be efficiently transferred to a surface in the form of three-dimensional nanostructures of metals (Pt, Cr), semiconductors (Ge), and complex oxides (e.g., BaTiO 3 ) by room temperature pulsed laser deposition. Selective deposition is obtained by interposing a sieve with apertures down to 100 nm between source and substrate. Nanostenciling allows for the organization of structures in predefined architectures with high accuracy. The patterning process is simple and rapid, since it does not imply additional processing steps. It is also parallel, resistless, and does not interfere with the structures' growth dynamics. The material deposited through the stencil mask conserves the desired functionality even at the level of the individual nanostructures. Nanostenciling can be performed in high or ultrahigh vacuum and is suitable for parallel prototyping of fragile or functionalized surfaces |
doi_str_mv | 10.1109/TNANO.2006.880898 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1695944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1695944</ieee_id><sourcerecordid>2544611781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-d17c0fb204bcaf564f6e7e41c5347ca20e384274b30b371ab36c4fe7f001588e3</originalsourceid><addsrcrecordid>eNpdkE1LHEEQhgcxEDX-gOClCQheZq3qr-k5ih9JYF1FNpBb09NWh5HZ6bV75uC_T29WEHKqgnreouqpqq8IC0RoL9erq9XDggPohTFgWnNQHWErsQYw6rD0Sugaufr9uTrO-QUAG63MUfW0cmPME42-H_rxD4uB3c2jn_o4uoHdu4lS74bMujf2FOOGrWmzpeSmORF7nIdMz2zpMiV2Q9uY-13uS_UplAidvteT6tfd7fr6R718-P7z-mpZewliqp-x8RA6DrLzLigtg6aGJHolZOMdBxJG8kZ2AjrRoOuE9jJQE8rtyhgSJ9XFfu82xdeZ8mQ3ffY0DG6kOGeLukEJyI0s6Lf_0Jc4p_Jhti1yDhqEKhDuIZ9izomC3aZ-49KbRbA7yfafZLuTbPeSS-b8fbHL3g0huSIyfwQNcjQtL9zZnuuJ6GOsW9VKKf4C6YmFDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912206035</pqid></control><display><type>article</type><title>Nanostenciling of Functional Materials by Room Temperature Pulsed Laser Deposition</title><source>IEEE Electronic Library (IEL)</source><creator>Cojocaru, C.V. ; Harnagea, C. ; Pignolet, A. ; Rosei, F.</creator><creatorcontrib>Cojocaru, C.V. ; Harnagea, C. ; Pignolet, A. ; Rosei, F.</creatorcontrib><description>We present how various features drawn in a miniature shadow mask (nanostencil) can be efficiently transferred to a surface in the form of three-dimensional nanostructures of metals (Pt, Cr), semiconductors (Ge), and complex oxides (e.g., BaTiO 3 ) by room temperature pulsed laser deposition. Selective deposition is obtained by interposing a sieve with apertures down to 100 nm between source and substrate. Nanostenciling allows for the organization of structures in predefined architectures with high accuracy. The patterning process is simple and rapid, since it does not imply additional processing steps. It is also parallel, resistless, and does not interfere with the structures' growth dynamics. The material deposited through the stencil mask conserves the desired functionality even at the level of the individual nanostructures. Nanostenciling can be performed in high or ultrahigh vacuum and is suitable for parallel prototyping of fragile or functionalized surfaces</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2006.880898</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Atomic force microscopy ; Chromium ; Deposition ; Electronics ; Exact sciences and technology ; functional materials ; Microelectronic fabrication (materials and surfaces technology) ; Nanocomposites ; Nanomaterials ; nanostencils ; Nanostructure ; Nanostructured materials ; Optical materials ; Optical pulses ; Pulsed laser deposition ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductor lasers ; Semiconductor materials ; Semiconductor nanostructures ; Semiconductors ; Surface emitting lasers ; Temperature ; Ultrahigh vacuum ; unconventional patterning approaches</subject><ispartof>IEEE transactions on nanotechnology, 2006-09, Vol.5 (5), p.470-477</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-d17c0fb204bcaf564f6e7e41c5347ca20e384274b30b371ab36c4fe7f001588e3</citedby><cites>FETCH-LOGICAL-c403t-d17c0fb204bcaf564f6e7e41c5347ca20e384274b30b371ab36c4fe7f001588e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1695944$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1695944$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18121892$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cojocaru, C.V.</creatorcontrib><creatorcontrib>Harnagea, C.</creatorcontrib><creatorcontrib>Pignolet, A.</creatorcontrib><creatorcontrib>Rosei, F.</creatorcontrib><title>Nanostenciling of Functional Materials by Room Temperature Pulsed Laser Deposition</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>We present how various features drawn in a miniature shadow mask (nanostencil) can be efficiently transferred to a surface in the form of three-dimensional nanostructures of metals (Pt, Cr), semiconductors (Ge), and complex oxides (e.g., BaTiO 3 ) by room temperature pulsed laser deposition. Selective deposition is obtained by interposing a sieve with apertures down to 100 nm between source and substrate. Nanostenciling allows for the organization of structures in predefined architectures with high accuracy. The patterning process is simple and rapid, since it does not imply additional processing steps. It is also parallel, resistless, and does not interfere with the structures' growth dynamics. The material deposited through the stencil mask conserves the desired functionality even at the level of the individual nanostructures. Nanostenciling can be performed in high or ultrahigh vacuum and is suitable for parallel prototyping of fragile or functionalized surfaces</description><subject>Applied sciences</subject><subject>Atomic force microscopy</subject><subject>Chromium</subject><subject>Deposition</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>functional materials</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>nanostencils</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Optical materials</subject><subject>Optical pulses</subject><subject>Pulsed laser deposition</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductor lasers</subject><subject>Semiconductor materials</subject><subject>Semiconductor nanostructures</subject><subject>Semiconductors</subject><subject>Surface emitting lasers</subject><subject>Temperature</subject><subject>Ultrahigh vacuum</subject><subject>unconventional patterning approaches</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LHEEQhgcxEDX-gOClCQheZq3qr-k5ih9JYF1FNpBb09NWh5HZ6bV75uC_T29WEHKqgnreouqpqq8IC0RoL9erq9XDggPohTFgWnNQHWErsQYw6rD0Sugaufr9uTrO-QUAG63MUfW0cmPME42-H_rxD4uB3c2jn_o4uoHdu4lS74bMujf2FOOGrWmzpeSmORF7nIdMz2zpMiV2Q9uY-13uS_UplAidvteT6tfd7fr6R718-P7z-mpZewliqp-x8RA6DrLzLigtg6aGJHolZOMdBxJG8kZ2AjrRoOuE9jJQE8rtyhgSJ9XFfu82xdeZ8mQ3ffY0DG6kOGeLukEJyI0s6Lf_0Jc4p_Jhti1yDhqEKhDuIZ9izomC3aZ-49KbRbA7yfafZLuTbPeSS-b8fbHL3g0huSIyfwQNcjQtL9zZnuuJ6GOsW9VKKf4C6YmFDA</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Cojocaru, C.V.</creator><creator>Harnagea, C.</creator><creator>Pignolet, A.</creator><creator>Rosei, F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20060901</creationdate><title>Nanostenciling of Functional Materials by Room Temperature Pulsed Laser Deposition</title><author>Cojocaru, C.V. ; Harnagea, C. ; Pignolet, A. ; Rosei, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-d17c0fb204bcaf564f6e7e41c5347ca20e384274b30b371ab36c4fe7f001588e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Atomic force microscopy</topic><topic>Chromium</topic><topic>Deposition</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>functional materials</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>nanostencils</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Optical materials</topic><topic>Optical pulses</topic><topic>Pulsed laser deposition</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductor lasers</topic><topic>Semiconductor materials</topic><topic>Semiconductor nanostructures</topic><topic>Semiconductors</topic><topic>Surface emitting lasers</topic><topic>Temperature</topic><topic>Ultrahigh vacuum</topic><topic>unconventional patterning approaches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cojocaru, C.V.</creatorcontrib><creatorcontrib>Harnagea, C.</creatorcontrib><creatorcontrib>Pignolet, A.</creatorcontrib><creatorcontrib>Rosei, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cojocaru, C.V.</au><au>Harnagea, C.</au><au>Pignolet, A.</au><au>Rosei, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostenciling of Functional Materials by Room Temperature Pulsed Laser Deposition</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2006-09-01</date><risdate>2006</risdate><volume>5</volume><issue>5</issue><spage>470</spage><epage>477</epage><pages>470-477</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>We present how various features drawn in a miniature shadow mask (nanostencil) can be efficiently transferred to a surface in the form of three-dimensional nanostructures of metals (Pt, Cr), semiconductors (Ge), and complex oxides (e.g., BaTiO 3 ) by room temperature pulsed laser deposition. Selective deposition is obtained by interposing a sieve with apertures down to 100 nm between source and substrate. Nanostenciling allows for the organization of structures in predefined architectures with high accuracy. The patterning process is simple and rapid, since it does not imply additional processing steps. It is also parallel, resistless, and does not interfere with the structures' growth dynamics. The material deposited through the stencil mask conserves the desired functionality even at the level of the individual nanostructures. Nanostenciling can be performed in high or ultrahigh vacuum and is suitable for parallel prototyping of fragile or functionalized surfaces</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2006.880898</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2006-09, Vol.5 (5), p.470-477 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_ieee_primary_1695944 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Atomic force microscopy Chromium Deposition Electronics Exact sciences and technology functional materials Microelectronic fabrication (materials and surfaces technology) Nanocomposites Nanomaterials nanostencils Nanostructure Nanostructured materials Optical materials Optical pulses Pulsed laser deposition Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductor lasers Semiconductor materials Semiconductor nanostructures Semiconductors Surface emitting lasers Temperature Ultrahigh vacuum unconventional patterning approaches |
title | Nanostenciling of Functional Materials by Room Temperature Pulsed Laser Deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostenciling%20of%20Functional%20Materials%20by%20Room%20Temperature%20Pulsed%20Laser%20Deposition&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Cojocaru,%20C.V.&rft.date=2006-09-01&rft.volume=5&rft.issue=5&rft.spage=470&rft.epage=477&rft.pages=470-477&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2006.880898&rft_dat=%3Cproquest_RIE%3E2544611781%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912206035&rft_id=info:pmid/&rft_ieee_id=1695944&rfr_iscdi=true |