Nanostenciling of Functional Materials by Room Temperature Pulsed Laser Deposition

We present how various features drawn in a miniature shadow mask (nanostencil) can be efficiently transferred to a surface in the form of three-dimensional nanostructures of metals (Pt, Cr), semiconductors (Ge), and complex oxides (e.g., BaTiO 3 ) by room temperature pulsed laser deposition. Selecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2006-09, Vol.5 (5), p.470-477
Hauptverfasser: Cojocaru, C.V., Harnagea, C., Pignolet, A., Rosei, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 477
container_issue 5
container_start_page 470
container_title IEEE transactions on nanotechnology
container_volume 5
creator Cojocaru, C.V.
Harnagea, C.
Pignolet, A.
Rosei, F.
description We present how various features drawn in a miniature shadow mask (nanostencil) can be efficiently transferred to a surface in the form of three-dimensional nanostructures of metals (Pt, Cr), semiconductors (Ge), and complex oxides (e.g., BaTiO 3 ) by room temperature pulsed laser deposition. Selective deposition is obtained by interposing a sieve with apertures down to 100 nm between source and substrate. Nanostenciling allows for the organization of structures in predefined architectures with high accuracy. The patterning process is simple and rapid, since it does not imply additional processing steps. It is also parallel, resistless, and does not interfere with the structures' growth dynamics. The material deposited through the stencil mask conserves the desired functionality even at the level of the individual nanostructures. Nanostenciling can be performed in high or ultrahigh vacuum and is suitable for parallel prototyping of fragile or functionalized surfaces
doi_str_mv 10.1109/TNANO.2006.880898
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1695944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1695944</ieee_id><sourcerecordid>2544611781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-d17c0fb204bcaf564f6e7e41c5347ca20e384274b30b371ab36c4fe7f001588e3</originalsourceid><addsrcrecordid>eNpdkE1LHEEQhgcxEDX-gOClCQheZq3qr-k5ih9JYF1FNpBb09NWh5HZ6bV75uC_T29WEHKqgnreouqpqq8IC0RoL9erq9XDggPohTFgWnNQHWErsQYw6rD0Sugaufr9uTrO-QUAG63MUfW0cmPME42-H_rxD4uB3c2jn_o4uoHdu4lS74bMujf2FOOGrWmzpeSmORF7nIdMz2zpMiV2Q9uY-13uS_UplAidvteT6tfd7fr6R718-P7z-mpZewliqp-x8RA6DrLzLigtg6aGJHolZOMdBxJG8kZ2AjrRoOuE9jJQE8rtyhgSJ9XFfu82xdeZ8mQ3ffY0DG6kOGeLukEJyI0s6Lf_0Jc4p_Jhti1yDhqEKhDuIZ9izomC3aZ-49KbRbA7yfafZLuTbPeSS-b8fbHL3g0huSIyfwQNcjQtL9zZnuuJ6GOsW9VKKf4C6YmFDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912206035</pqid></control><display><type>article</type><title>Nanostenciling of Functional Materials by Room Temperature Pulsed Laser Deposition</title><source>IEEE Electronic Library (IEL)</source><creator>Cojocaru, C.V. ; Harnagea, C. ; Pignolet, A. ; Rosei, F.</creator><creatorcontrib>Cojocaru, C.V. ; Harnagea, C. ; Pignolet, A. ; Rosei, F.</creatorcontrib><description>We present how various features drawn in a miniature shadow mask (nanostencil) can be efficiently transferred to a surface in the form of three-dimensional nanostructures of metals (Pt, Cr), semiconductors (Ge), and complex oxides (e.g., BaTiO 3 ) by room temperature pulsed laser deposition. Selective deposition is obtained by interposing a sieve with apertures down to 100 nm between source and substrate. Nanostenciling allows for the organization of structures in predefined architectures with high accuracy. The patterning process is simple and rapid, since it does not imply additional processing steps. It is also parallel, resistless, and does not interfere with the structures' growth dynamics. The material deposited through the stencil mask conserves the desired functionality even at the level of the individual nanostructures. Nanostenciling can be performed in high or ultrahigh vacuum and is suitable for parallel prototyping of fragile or functionalized surfaces</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2006.880898</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Atomic force microscopy ; Chromium ; Deposition ; Electronics ; Exact sciences and technology ; functional materials ; Microelectronic fabrication (materials and surfaces technology) ; Nanocomposites ; Nanomaterials ; nanostencils ; Nanostructure ; Nanostructured materials ; Optical materials ; Optical pulses ; Pulsed laser deposition ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductor lasers ; Semiconductor materials ; Semiconductor nanostructures ; Semiconductors ; Surface emitting lasers ; Temperature ; Ultrahigh vacuum ; unconventional patterning approaches</subject><ispartof>IEEE transactions on nanotechnology, 2006-09, Vol.5 (5), p.470-477</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-d17c0fb204bcaf564f6e7e41c5347ca20e384274b30b371ab36c4fe7f001588e3</citedby><cites>FETCH-LOGICAL-c403t-d17c0fb204bcaf564f6e7e41c5347ca20e384274b30b371ab36c4fe7f001588e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1695944$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1695944$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18121892$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cojocaru, C.V.</creatorcontrib><creatorcontrib>Harnagea, C.</creatorcontrib><creatorcontrib>Pignolet, A.</creatorcontrib><creatorcontrib>Rosei, F.</creatorcontrib><title>Nanostenciling of Functional Materials by Room Temperature Pulsed Laser Deposition</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>We present how various features drawn in a miniature shadow mask (nanostencil) can be efficiently transferred to a surface in the form of three-dimensional nanostructures of metals (Pt, Cr), semiconductors (Ge), and complex oxides (e.g., BaTiO 3 ) by room temperature pulsed laser deposition. Selective deposition is obtained by interposing a sieve with apertures down to 100 nm between source and substrate. Nanostenciling allows for the organization of structures in predefined architectures with high accuracy. The patterning process is simple and rapid, since it does not imply additional processing steps. It is also parallel, resistless, and does not interfere with the structures' growth dynamics. The material deposited through the stencil mask conserves the desired functionality even at the level of the individual nanostructures. Nanostenciling can be performed in high or ultrahigh vacuum and is suitable for parallel prototyping of fragile or functionalized surfaces</description><subject>Applied sciences</subject><subject>Atomic force microscopy</subject><subject>Chromium</subject><subject>Deposition</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>functional materials</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>nanostencils</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Optical materials</subject><subject>Optical pulses</subject><subject>Pulsed laser deposition</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductor lasers</subject><subject>Semiconductor materials</subject><subject>Semiconductor nanostructures</subject><subject>Semiconductors</subject><subject>Surface emitting lasers</subject><subject>Temperature</subject><subject>Ultrahigh vacuum</subject><subject>unconventional patterning approaches</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LHEEQhgcxEDX-gOClCQheZq3qr-k5ih9JYF1FNpBb09NWh5HZ6bV75uC_T29WEHKqgnreouqpqq8IC0RoL9erq9XDggPohTFgWnNQHWErsQYw6rD0Sugaufr9uTrO-QUAG63MUfW0cmPME42-H_rxD4uB3c2jn_o4uoHdu4lS74bMujf2FOOGrWmzpeSmORF7nIdMz2zpMiV2Q9uY-13uS_UplAidvteT6tfd7fr6R718-P7z-mpZewliqp-x8RA6DrLzLigtg6aGJHolZOMdBxJG8kZ2AjrRoOuE9jJQE8rtyhgSJ9XFfu82xdeZ8mQ3ffY0DG6kOGeLukEJyI0s6Lf_0Jc4p_Jhti1yDhqEKhDuIZ9izomC3aZ-49KbRbA7yfafZLuTbPeSS-b8fbHL3g0huSIyfwQNcjQtL9zZnuuJ6GOsW9VKKf4C6YmFDA</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Cojocaru, C.V.</creator><creator>Harnagea, C.</creator><creator>Pignolet, A.</creator><creator>Rosei, F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20060901</creationdate><title>Nanostenciling of Functional Materials by Room Temperature Pulsed Laser Deposition</title><author>Cojocaru, C.V. ; Harnagea, C. ; Pignolet, A. ; Rosei, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-d17c0fb204bcaf564f6e7e41c5347ca20e384274b30b371ab36c4fe7f001588e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Atomic force microscopy</topic><topic>Chromium</topic><topic>Deposition</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>functional materials</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>nanostencils</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Optical materials</topic><topic>Optical pulses</topic><topic>Pulsed laser deposition</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductor lasers</topic><topic>Semiconductor materials</topic><topic>Semiconductor nanostructures</topic><topic>Semiconductors</topic><topic>Surface emitting lasers</topic><topic>Temperature</topic><topic>Ultrahigh vacuum</topic><topic>unconventional patterning approaches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cojocaru, C.V.</creatorcontrib><creatorcontrib>Harnagea, C.</creatorcontrib><creatorcontrib>Pignolet, A.</creatorcontrib><creatorcontrib>Rosei, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cojocaru, C.V.</au><au>Harnagea, C.</au><au>Pignolet, A.</au><au>Rosei, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostenciling of Functional Materials by Room Temperature Pulsed Laser Deposition</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2006-09-01</date><risdate>2006</risdate><volume>5</volume><issue>5</issue><spage>470</spage><epage>477</epage><pages>470-477</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>We present how various features drawn in a miniature shadow mask (nanostencil) can be efficiently transferred to a surface in the form of three-dimensional nanostructures of metals (Pt, Cr), semiconductors (Ge), and complex oxides (e.g., BaTiO 3 ) by room temperature pulsed laser deposition. Selective deposition is obtained by interposing a sieve with apertures down to 100 nm between source and substrate. Nanostenciling allows for the organization of structures in predefined architectures with high accuracy. The patterning process is simple and rapid, since it does not imply additional processing steps. It is also parallel, resistless, and does not interfere with the structures' growth dynamics. The material deposited through the stencil mask conserves the desired functionality even at the level of the individual nanostructures. Nanostenciling can be performed in high or ultrahigh vacuum and is suitable for parallel prototyping of fragile or functionalized surfaces</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2006.880898</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2006-09, Vol.5 (5), p.470-477
issn 1536-125X
1941-0085
language eng
recordid cdi_ieee_primary_1695944
source IEEE Electronic Library (IEL)
subjects Applied sciences
Atomic force microscopy
Chromium
Deposition
Electronics
Exact sciences and technology
functional materials
Microelectronic fabrication (materials and surfaces technology)
Nanocomposites
Nanomaterials
nanostencils
Nanostructure
Nanostructured materials
Optical materials
Optical pulses
Pulsed laser deposition
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductor lasers
Semiconductor materials
Semiconductor nanostructures
Semiconductors
Surface emitting lasers
Temperature
Ultrahigh vacuum
unconventional patterning approaches
title Nanostenciling of Functional Materials by Room Temperature Pulsed Laser Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostenciling%20of%20Functional%20Materials%20by%20Room%20Temperature%20Pulsed%20Laser%20Deposition&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Cojocaru,%20C.V.&rft.date=2006-09-01&rft.volume=5&rft.issue=5&rft.spage=470&rft.epage=477&rft.pages=470-477&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2006.880898&rft_dat=%3Cproquest_RIE%3E2544611781%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912206035&rft_id=info:pmid/&rft_ieee_id=1695944&rfr_iscdi=true