Nanostenciling of Functional Materials by Room Temperature Pulsed Laser Deposition

We present how various features drawn in a miniature shadow mask (nanostencil) can be efficiently transferred to a surface in the form of three-dimensional nanostructures of metals (Pt, Cr), semiconductors (Ge), and complex oxides (e.g., BaTiO 3 ) by room temperature pulsed laser deposition. Selecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2006-09, Vol.5 (5), p.470-477
Hauptverfasser: Cojocaru, C.V., Harnagea, C., Pignolet, A., Rosei, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present how various features drawn in a miniature shadow mask (nanostencil) can be efficiently transferred to a surface in the form of three-dimensional nanostructures of metals (Pt, Cr), semiconductors (Ge), and complex oxides (e.g., BaTiO 3 ) by room temperature pulsed laser deposition. Selective deposition is obtained by interposing a sieve with apertures down to 100 nm between source and substrate. Nanostenciling allows for the organization of structures in predefined architectures with high accuracy. The patterning process is simple and rapid, since it does not imply additional processing steps. It is also parallel, resistless, and does not interfere with the structures' growth dynamics. The material deposited through the stencil mask conserves the desired functionality even at the level of the individual nanostructures. Nanostenciling can be performed in high or ultrahigh vacuum and is suitable for parallel prototyping of fragile or functionalized surfaces
ISSN:1536-125X
1941-0085
DOI:10.1109/TNANO.2006.880898