Shielding against design flaws with field repairable control logic

Correctness is a paramount attribute of any microprocessor design; however, without novel technologies to tame the increasing complexity of design verification, the amount of bugs that escape into silicon will only grow in the future. In this paper, we propose a novel hardware patching mechanism tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wagner, Ilya, Bertacco, Valeria, Austin, Todd
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Correctness is a paramount attribute of any microprocessor design; however, without novel technologies to tame the increasing complexity of design verification, the amount of bugs that escape into silicon will only grow in the future. In this paper, we propose a novel hardware patching mechanism that can detect design errors which escaped the verification process, and can correct them directly in the field. We accomplish this goal through a simple field-programmable state matcher, which can identify erroneous configurations in the processor's control state and switch the processor into formally-verified degraded performance mode, once a "match" occurs. When the instructions exposing the design flaw are committed, the processor is switched back to normal mode. We show that our approach can detect and correct infrequently-occurring errors with almost no performance impact and has approximately 2% area overhead.
ISSN:0738-100X
DOI:10.1145/1146909.1146998