Primal-Dual Distance Bounds of Linear Codes With Application to Cryptography

Let N(d,d perp ) denote the minimum length n of a linear code C with d and d perp , where d is the minimum Hamming distance of C and d perp is the minimum Hamming distance of C perp . In this correspondence, we show lower bounds and an upper bound on N(d,d perp ). Further, for small values of d and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2006-09, Vol.52 (9), p.4251-4256
Hauptverfasser: Matsumoto, R., Kurosawa, K., Itoh, T., Konno, T., Uyematsu, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let N(d,d perp ) denote the minimum length n of a linear code C with d and d perp , where d is the minimum Hamming distance of C and d perp is the minimum Hamming distance of C perp . In this correspondence, we show lower bounds and an upper bound on N(d,d perp ). Further, for small values of d and d perp , we determine N(d,d perp ) and give a generator matrix of the optimum linear code. This problem is directly related to the design method of cryptographic Boolean functions suggested by Kurosawa et al
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2006.880050