Primal-Dual Distance Bounds of Linear Codes With Application to Cryptography
Let N(d,d perp ) denote the minimum length n of a linear code C with d and d perp , where d is the minimum Hamming distance of C and d perp is the minimum Hamming distance of C perp . In this correspondence, we show lower bounds and an upper bound on N(d,d perp ). Further, for small values of d and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2006-09, Vol.52 (9), p.4251-4256 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let N(d,d perp ) denote the minimum length n of a linear code C with d and d perp , where d is the minimum Hamming distance of C and d perp is the minimum Hamming distance of C perp . In this correspondence, we show lower bounds and an upper bound on N(d,d perp ). Further, for small values of d and d perp , we determine N(d,d perp ) and give a generator matrix of the optimum linear code. This problem is directly related to the design method of cryptographic Boolean functions suggested by Kurosawa et al |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2006.880050 |