Theory of Computer Addition and Overflows

Computer addition is a groupoid. If an additive identity exists it is unique. If(and only if) addition is defined with the compute through the overflow (CTO) property, then a finite ring of integers is the homomorphic image of the computer number system and addition. Stated another way, the necessar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 1978-04, Vol.C-27 (4), p.297-301
1. Verfasser: Garner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 301
container_issue 4
container_start_page 297
container_title IEEE transactions on computers
container_volume C-27
creator Garner
description Computer addition is a groupoid. If an additive identity exists it is unique. If(and only if) addition is defined with the compute through the overflow (CTO) property, then a finite ring of integers is the homomorphic image of the computer number system and addition. Stated another way, the necessary and sufficient condition for CTO is a congruence relation on the integers. Also, if the number system has CTO capabilities for addition, it also has extended CTO properties for addition. A technique is presented for determining the correct sum in the extended compute through overflow (ECTO) mode of computation.
doi_str_mv 10.1109/TC.1978.1675101
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_1675101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1675101</ieee_id><sourcerecordid>10_1109_TC_1978_1675101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-40bbcbe6495b27d9f5ea77cc7909e576169847f0b75676a7e6c2222dc66692703</originalsourceid><addsrcrecordid>eNpFj71PwzAQxS0EEqEwM7BkZUh6TmNfbqwiKEiVuoTZSpyzCGrryg6g_ve0aiTe8ob3If2EeJSQSwk0b-pcEla51KgkyCuRSKUwI1L6WiQAsspoUcKtuIvxCwB0AZSI5-aTfTim3qW13x2-Rw7psu-HcfD7tN336eaHg9v633gvbly7jfww-Ux8vL409Vu23qze6-U6s4WiMSuh62zHuiTVFdiTU9wiWosExAq11FSV6KBDpVG3yNoWJ_VWa00FwmIm5pdfG3yMgZ05hGHXhqORYM6kpqnNmdRMpKfF02UxMPN_e0r_ALrkTVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theory of Computer Addition and Overflows</title><source>IEEE Electronic Library (IEL)</source><creator>Garner</creator><creatorcontrib>Garner</creatorcontrib><description>Computer addition is a groupoid. If an additive identity exists it is unique. If(and only if) addition is defined with the compute through the overflow (CTO) property, then a finite ring of integers is the homomorphic image of the computer number system and addition. Stated another way, the necessary and sufficient condition for CTO is a congruence relation on the integers. Also, if the number system has CTO capabilities for addition, it also has extended CTO properties for addition. A technique is presented for determining the correct sum in the extended compute through overflow (ECTO) mode of computation.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.1978.1675101</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Additive identity ; compute through overflow (CTO) ; computer arithmetic ; models of computer arithmetic ; number systems ; overflow behavior</subject><ispartof>IEEE transactions on computers, 1978-04, Vol.C-27 (4), p.297-301</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-40bbcbe6495b27d9f5ea77cc7909e576169847f0b75676a7e6c2222dc66692703</citedby><cites>FETCH-LOGICAL-c259t-40bbcbe6495b27d9f5ea77cc7909e576169847f0b75676a7e6c2222dc66692703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1675101$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1675101$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garner</creatorcontrib><title>Theory of Computer Addition and Overflows</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>Computer addition is a groupoid. If an additive identity exists it is unique. If(and only if) addition is defined with the compute through the overflow (CTO) property, then a finite ring of integers is the homomorphic image of the computer number system and addition. Stated another way, the necessary and sufficient condition for CTO is a congruence relation on the integers. Also, if the number system has CTO capabilities for addition, it also has extended CTO properties for addition. A technique is presented for determining the correct sum in the extended compute through overflow (ECTO) mode of computation.</description><subject>Additive identity</subject><subject>compute through overflow (CTO)</subject><subject>computer arithmetic</subject><subject>models of computer arithmetic</subject><subject>number systems</subject><subject>overflow behavior</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1978</creationdate><recordtype>article</recordtype><recordid>eNpFj71PwzAQxS0EEqEwM7BkZUh6TmNfbqwiKEiVuoTZSpyzCGrryg6g_ve0aiTe8ob3If2EeJSQSwk0b-pcEla51KgkyCuRSKUwI1L6WiQAsspoUcKtuIvxCwB0AZSI5-aTfTim3qW13x2-Rw7psu-HcfD7tN336eaHg9v633gvbly7jfww-Ux8vL409Vu23qze6-U6s4WiMSuh62zHuiTVFdiTU9wiWosExAq11FSV6KBDpVG3yNoWJ_VWa00FwmIm5pdfG3yMgZ05hGHXhqORYM6kpqnNmdRMpKfF02UxMPN_e0r_ALrkTVg</recordid><startdate>197804</startdate><enddate>197804</enddate><creator>Garner</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197804</creationdate><title>Theory of Computer Addition and Overflows</title><author>Garner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-40bbcbe6495b27d9f5ea77cc7909e576169847f0b75676a7e6c2222dc66692703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1978</creationdate><topic>Additive identity</topic><topic>compute through overflow (CTO)</topic><topic>computer arithmetic</topic><topic>models of computer arithmetic</topic><topic>number systems</topic><topic>overflow behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garner</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of Computer Addition and Overflows</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>1978-04</date><risdate>1978</risdate><volume>C-27</volume><issue>4</issue><spage>297</spage><epage>301</epage><pages>297-301</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>Computer addition is a groupoid. If an additive identity exists it is unique. If(and only if) addition is defined with the compute through the overflow (CTO) property, then a finite ring of integers is the homomorphic image of the computer number system and addition. Stated another way, the necessary and sufficient condition for CTO is a congruence relation on the integers. Also, if the number system has CTO capabilities for addition, it also has extended CTO properties for addition. A technique is presented for determining the correct sum in the extended compute through overflow (ECTO) mode of computation.</abstract><pub>IEEE</pub><doi>10.1109/TC.1978.1675101</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 1978-04, Vol.C-27 (4), p.297-301
issn 0018-9340
1557-9956
language eng
recordid cdi_ieee_primary_1675101
source IEEE Electronic Library (IEL)
subjects Additive identity
compute through overflow (CTO)
computer arithmetic
models of computer arithmetic
number systems
overflow behavior
title Theory of Computer Addition and Overflows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20Computer%20Addition%20and%20Overflows&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Garner&rft.date=1978-04&rft.volume=C-27&rft.issue=4&rft.spage=297&rft.epage=301&rft.pages=297-301&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.1978.1675101&rft_dat=%3Ccrossref_RIE%3E10_1109_TC_1978_1675101%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1675101&rfr_iscdi=true