Theory of Computer Addition and Overflows
Computer addition is a groupoid. If an additive identity exists it is unique. If(and only if) addition is defined with the compute through the overflow (CTO) property, then a finite ring of integers is the homomorphic image of the computer number system and addition. Stated another way, the necessar...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 1978-04, Vol.C-27 (4), p.297-301 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 301 |
---|---|
container_issue | 4 |
container_start_page | 297 |
container_title | IEEE transactions on computers |
container_volume | C-27 |
creator | Garner |
description | Computer addition is a groupoid. If an additive identity exists it is unique. If(and only if) addition is defined with the compute through the overflow (CTO) property, then a finite ring of integers is the homomorphic image of the computer number system and addition. Stated another way, the necessary and sufficient condition for CTO is a congruence relation on the integers. Also, if the number system has CTO capabilities for addition, it also has extended CTO properties for addition. A technique is presented for determining the correct sum in the extended compute through overflow (ECTO) mode of computation. |
doi_str_mv | 10.1109/TC.1978.1675101 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_1675101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1675101</ieee_id><sourcerecordid>10_1109_TC_1978_1675101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-40bbcbe6495b27d9f5ea77cc7909e576169847f0b75676a7e6c2222dc66692703</originalsourceid><addsrcrecordid>eNpFj71PwzAQxS0EEqEwM7BkZUh6TmNfbqwiKEiVuoTZSpyzCGrryg6g_ve0aiTe8ob3If2EeJSQSwk0b-pcEla51KgkyCuRSKUwI1L6WiQAsspoUcKtuIvxCwB0AZSI5-aTfTim3qW13x2-Rw7psu-HcfD7tN336eaHg9v633gvbly7jfww-Ux8vL409Vu23qze6-U6s4WiMSuh62zHuiTVFdiTU9wiWosExAq11FSV6KBDpVG3yNoWJ_VWa00FwmIm5pdfG3yMgZ05hGHXhqORYM6kpqnNmdRMpKfF02UxMPN_e0r_ALrkTVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theory of Computer Addition and Overflows</title><source>IEEE Electronic Library (IEL)</source><creator>Garner</creator><creatorcontrib>Garner</creatorcontrib><description>Computer addition is a groupoid. If an additive identity exists it is unique. If(and only if) addition is defined with the compute through the overflow (CTO) property, then a finite ring of integers is the homomorphic image of the computer number system and addition. Stated another way, the necessary and sufficient condition for CTO is a congruence relation on the integers. Also, if the number system has CTO capabilities for addition, it also has extended CTO properties for addition. A technique is presented for determining the correct sum in the extended compute through overflow (ECTO) mode of computation.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.1978.1675101</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Additive identity ; compute through overflow (CTO) ; computer arithmetic ; models of computer arithmetic ; number systems ; overflow behavior</subject><ispartof>IEEE transactions on computers, 1978-04, Vol.C-27 (4), p.297-301</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-40bbcbe6495b27d9f5ea77cc7909e576169847f0b75676a7e6c2222dc66692703</citedby><cites>FETCH-LOGICAL-c259t-40bbcbe6495b27d9f5ea77cc7909e576169847f0b75676a7e6c2222dc66692703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1675101$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1675101$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garner</creatorcontrib><title>Theory of Computer Addition and Overflows</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>Computer addition is a groupoid. If an additive identity exists it is unique. If(and only if) addition is defined with the compute through the overflow (CTO) property, then a finite ring of integers is the homomorphic image of the computer number system and addition. Stated another way, the necessary and sufficient condition for CTO is a congruence relation on the integers. Also, if the number system has CTO capabilities for addition, it also has extended CTO properties for addition. A technique is presented for determining the correct sum in the extended compute through overflow (ECTO) mode of computation.</description><subject>Additive identity</subject><subject>compute through overflow (CTO)</subject><subject>computer arithmetic</subject><subject>models of computer arithmetic</subject><subject>number systems</subject><subject>overflow behavior</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1978</creationdate><recordtype>article</recordtype><recordid>eNpFj71PwzAQxS0EEqEwM7BkZUh6TmNfbqwiKEiVuoTZSpyzCGrryg6g_ve0aiTe8ob3If2EeJSQSwk0b-pcEla51KgkyCuRSKUwI1L6WiQAsspoUcKtuIvxCwB0AZSI5-aTfTim3qW13x2-Rw7psu-HcfD7tN336eaHg9v633gvbly7jfww-Ux8vL409Vu23qze6-U6s4WiMSuh62zHuiTVFdiTU9wiWosExAq11FSV6KBDpVG3yNoWJ_VWa00FwmIm5pdfG3yMgZ05hGHXhqORYM6kpqnNmdRMpKfF02UxMPN_e0r_ALrkTVg</recordid><startdate>197804</startdate><enddate>197804</enddate><creator>Garner</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197804</creationdate><title>Theory of Computer Addition and Overflows</title><author>Garner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-40bbcbe6495b27d9f5ea77cc7909e576169847f0b75676a7e6c2222dc66692703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1978</creationdate><topic>Additive identity</topic><topic>compute through overflow (CTO)</topic><topic>computer arithmetic</topic><topic>models of computer arithmetic</topic><topic>number systems</topic><topic>overflow behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garner</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of Computer Addition and Overflows</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>1978-04</date><risdate>1978</risdate><volume>C-27</volume><issue>4</issue><spage>297</spage><epage>301</epage><pages>297-301</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>Computer addition is a groupoid. If an additive identity exists it is unique. If(and only if) addition is defined with the compute through the overflow (CTO) property, then a finite ring of integers is the homomorphic image of the computer number system and addition. Stated another way, the necessary and sufficient condition for CTO is a congruence relation on the integers. Also, if the number system has CTO capabilities for addition, it also has extended CTO properties for addition. A technique is presented for determining the correct sum in the extended compute through overflow (ECTO) mode of computation.</abstract><pub>IEEE</pub><doi>10.1109/TC.1978.1675101</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 1978-04, Vol.C-27 (4), p.297-301 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_ieee_primary_1675101 |
source | IEEE Electronic Library (IEL) |
subjects | Additive identity compute through overflow (CTO) computer arithmetic models of computer arithmetic number systems overflow behavior |
title | Theory of Computer Addition and Overflows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20Computer%20Addition%20and%20Overflows&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Garner&rft.date=1978-04&rft.volume=C-27&rft.issue=4&rft.spage=297&rft.epage=301&rft.pages=297-301&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.1978.1675101&rft_dat=%3Ccrossref_RIE%3E10_1109_TC_1978_1675101%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1675101&rfr_iscdi=true |