Theory of Computer Addition and Overflows

Computer addition is a groupoid. If an additive identity exists it is unique. If(and only if) addition is defined with the compute through the overflow (CTO) property, then a finite ring of integers is the homomorphic image of the computer number system and addition. Stated another way, the necessar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 1978-04, Vol.C-27 (4), p.297-301
1. Verfasser: Garner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Computer addition is a groupoid. If an additive identity exists it is unique. If(and only if) addition is defined with the compute through the overflow (CTO) property, then a finite ring of integers is the homomorphic image of the computer number system and addition. Stated another way, the necessary and sufficient condition for CTO is a congruence relation on the integers. Also, if the number system has CTO capabilities for addition, it also has extended CTO properties for addition. A technique is presented for determining the correct sum in the extended compute through overflow (ECTO) mode of computation.
ISSN:0018-9340
1557-9956
DOI:10.1109/TC.1978.1675101