More Efficient Radix-2 Algorithms for Some Elementary Functions

de Lugish [1] has defined efficient algorithms in radix 2 for certain elementary functions such as Y[X,Y/X 1/2 , Y + lnX, Y.exp (X), etc. His technique requires a systematic 1-bit left shift of a partially converged result, together with two 4-bit comparisons to select a ternary digit for the next i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 1975-11, Vol.C-24 (11), p.1049-1054
1. Verfasser: Baker, P.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:de Lugish [1] has defined efficient algorithms in radix 2 for certain elementary functions such as Y[X,Y/X 1/2 , Y + lnX, Y.exp (X), etc. His technique requires a systematic 1-bit left shift of a partially converged result, together with two 4-bit comparisons to select a ternary digit for the next iteration. This selection of digits reduces the average number of full precision additions to about 1/3 of those required in conventional schemes [3]. This paper develops modified algorithms in radix 2 which are more efficient when the time for a full precision addition is comparable to the time for a shift and comparison. The modified procedure is developed for Y/X in detail where more than a 40 percent decrease in execution time is achieved for only a marginal increase in cost.
ISSN:0018-9340
1557-9956
DOI:10.1109/T-C.1975.224132