Theory of electrothermal behavior of bipolar transistors: part III-impact ionization
A detailed theoretical and numerical analysis of single-finger and two-finger bipolar transistors is proposed, which includes both self-heating and impact-ionization effects. Although related to completely different physical phenomena, self-heating and impact ionization share a common feature in tha...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2006-07, Vol.53 (7), p.1683-1697 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A detailed theoretical and numerical analysis of single-finger and two-finger bipolar transistors is proposed, which includes both self-heating and impact-ionization effects. Although related to completely different physical phenomena, self-heating and impact ionization share a common feature in that they introduce a positive feedback mechanism that causes the same singularities in the current-voltage characteristics, namely, a snapback (or flyback) behavior and current bifurcation. These singularities are triggered if either one or both effects are activated. Based on a rigorous mathematical method, referred to as the "Jacobian method," generalized conditions are derived for determining the onset of flyback and bifurcation, which ultimately limit the safe operating region, as a result of the combined action of impact ionization and self-heating. The proposed formulation also includes several important effects not considered in previous contributions. Finally, a detailed analysis of the limiting boundaries for safe device operation is presented, and simple criteria for the optimal choice of the ballasting network are suggested |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2006.876285 |