Ridge-valley path planning for 3D terrains
This paper presents a tactical path planning algorithm for following ridges or valleys across a 3D terrain. The intent is to generate a path that enables an unmanned vehicle to surveil with maximum observability by traversing the ridges of a terrain or to operate with maximum covertness by navigatin...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a tactical path planning algorithm for following ridges or valleys across a 3D terrain. The intent is to generate a path that enables an unmanned vehicle to surveil with maximum observability by traversing the ridges of a terrain or to operate with maximum covertness by navigating the valleys. The input to the algorithm is a 3D triangle mesh model for the terrain of interest. This mesh may be non-uniform and non-regular. Thus, the algorithm leverages research from computer graphics and computer vision to identify ridge-valley features on the terrain. These features serve as "obstacles" for an artificial potential field algorithm. The valleys are obstacles for a surveillance path, or the ridges are obstacles for a covert path. We incorporate geodesic-rather than Euclidean-distances into the potential field formulation to extend path planning to 3D surfaces. We present the theory of our proposed algorithm and provide experimental results |
---|---|
ISSN: | 1050-4729 2577-087X |
DOI: | 10.1109/ROBOT.2006.1641171 |