Region-based Image Annotation using Asymmetrical Support Vector Machine-based Multiple-Instance Learning
In region-based image annotation, keywords are usually associated with images instead of individual regions in the training data set. This poses a major challenge for any learning strategy. In this paper, we formulate image annotation as a supervised learning problem under Multiple-Instance Learning...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In region-based image annotation, keywords are usually associated with images instead of individual regions in the training data set. This poses a major challenge for any learning strategy. In this paper, we formulate image annotation as a supervised learning problem under Multiple-Instance Learning (MIL) framework. We present a novel Asymmetrical Support Vector Machine-based MIL algorithm (ASVM-MIL), which extends the conventional Support Vector Machine (SVM) to the MIL setting by introducing asymmetrical loss functions for false positives and false negatives. The proposed ASVM-MIL algorithm is evaluated on both image annotation data sets and the benchmark MUSK data sets. |
---|---|
ISSN: | 1063-6919 |
DOI: | 10.1109/CVPR.2006.250 |