Robust Statistical Estimation and Segmentation of Multiple Subspaces
We study the problem of estimating a mixed geometric model of multiple subspaces in the presence of a significant amount of outliers. The estimation of multiple subspaces is an important problem in computer vision, particularly for segmenting multiple motions in an image sequence. We first provide a...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the problem of estimating a mixed geometric model of multiple subspaces in the presence of a significant amount of outliers. The estimation of multiple subspaces is an important problem in computer vision, particularly for segmenting multiple motions in an image sequence. We first provide a comprehensive survey of robust statistical techniques in the literature, and identify three main approaches for detecting and rejecting outliers. Through a careful examination of these approaches, we propose and investigate three principled methods for robustly estimating mixed subspace models: random sample consensus, the influence function, and multivariate trimming. Using a benchmark synthetic experiment and a set of real image sequences, we conduct a thorough comparison of the three methods |
---|---|
ISSN: | 2160-7508 2160-7516 |
DOI: | 10.1109/CVPRW.2006.178 |