Multi-depth Probe Transcranial Electrical Stimulation Modeling in 2-D using Finite Element Method Analysis
Multi-depth probe transcranial electrical stimulation yields varying electrical potentials and electrical field values at different probe depths in the head. The purpose of this research was to determine whether a stimulating probe would increase or decrease the voltages required to achieve muscle s...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multi-depth probe transcranial electrical stimulation yields varying electrical potentials and electrical field values at different probe depths in the head. The purpose of this research was to determine whether a stimulating probe would increase or decrease the voltages required to achieve muscle stimulation via the motor cortex. A finite element model was constructed to analyze the theoretical effects of multi-depth probe transcranial electrical stimulation on a 2-D circular volume conduction model. Laplace's equation was used to model the electrostatic effects of the system, and boundary conditions were set to reflect realistic tissue, fluid, and bone parameters. A mapping of the electric potentials has been developed to identify changes in electric potential through the various layers of the head and the intracranial region. |
---|---|
ISSN: | 2160-6986 2160-7028 |
DOI: | 10.1109/NEBC.2006.1629747 |