Characterization, design, modeling, and model validation of silicon-wafer M:N balun components under matched and unmatched conditions
In this paper, we characterize and model M:N baluns for silicon RFIC design. A modeling methodology is presented based on a geometrically scalable lumped-element approach that incorporates both skin effect and substrate loss. This approach is extended to include the effects of a patterned ground shi...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2006-05, Vol.41 (5), p.1201-1209 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we characterize and model M:N baluns for silicon RFIC design. A modeling methodology is presented based on a geometrically scalable lumped-element approach that incorporates both skin effect and substrate loss. This approach is extended to include the effects of a patterned ground shield under the balun. The modeling approach is validated with measured S-parameters and extracted impedances from various circuit configurations. The impedance transfer characteristics of the model and balun over substrate and over a patterned ground shield are explored. Matching considerations are addressed by evaluating the model accuracy with measured data under matched and unmatched conditions. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2006.872736 |