High performance file I/O for the Blue Gene/L supercomputer
Parallel I/O plays a crucial role for most data-intensive applications running on massively parallel systems like Blue Gene/L that provides the promise of delivering enormous computational capability. We designed and implemented a highly scalable parallel file I/O architecture for Blue Gene/L, which...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Parallel I/O plays a crucial role for most data-intensive applications running on massively parallel systems like Blue Gene/L that provides the promise of delivering enormous computational capability. We designed and implemented a highly scalable parallel file I/O architecture for Blue Gene/L, which leverages the benefit of the hierarchical and functional partitioning design of the system software with separate computational and I/O cores. The architecture exploits the scalability aspect of GPFS (General Parallel File System) at the backend, while using MPI I/O as an interface between the application I/O and the file system. We demonstrate the impact of our high performance I/O solution for Blue Gene/L with a comprehensive evaluation that consists of a number of widely used parallel I/O benchmarks and I/O intensive applications. Our design and implementation is not only able to deliver at least one order of magnitude speed up in terms of I/O bandwidth for a real-scale application HOMME (achieving aggregate bandwidth of 1.8 GB/Sec and 2.3 GB/Sec for write and read accesses, respectively), but also supports high-level parallel I/O data interfaces such as parallel HDF5 and parallel NetCDF scaling up to a large number of processors. |
---|---|
ISSN: | 1530-0897 2378-203X |
DOI: | 10.1109/HPCA.2006.1598125 |