Volatile organic compound discrimination using nanostructured polythiophene sensors
New synthesis methods have allowed us to make many semiconducting polythiophenes polymers with different side and end groups. Also, co-polymers combining a polythiophene chain attached to another polymer chain were synthesized. This design freedom brings a new dimensionality to the sensing propertie...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | New synthesis methods have allowed us to make many semiconducting polythiophenes polymers with different side and end groups. Also, co-polymers combining a polythiophene chain attached to another polymer chain were synthesized. This design freedom brings a new dimensionality to the sensing properties of the materials. Single chip micro sensor resistor arrays, utilizing multiple polymers, were fabricated and then tested in an automated system. The sensors demonstrated ppm level sensitivity to various volatile organic compounds (VOCs) including both polar and non-polar materials. Polymers with different chemical structures show strong selectivity to different VOCs. By applying pattern recognition algorithms, the sensor response clearly discriminates between the tested VOCs allowing us to conjecture as to the role molecular modification have in determining response to specific VOCs |
---|---|
ISSN: | 1930-0395 2168-9229 |
DOI: | 10.1109/ICSENS.2005.1597668 |