Strategy for improving the reliability in the facial identification
This paper presents a simple, robust and novel for errors detection in biometric system which is applied to the Olivetti Research Laboratory (ORL) face database (400 images). We have used as parameterisation different transformed dominions (Travieso et al., 2004; Faundez, 2003), and a support vector...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a simple, robust and novel for errors detection in biometric system which is applied to the Olivetti Research Laboratory (ORL) face database (400 images). We have used as parameterisation different transformed dominions (Travieso et al., 2004; Faundez, 2003), and a support vector machine (SVM) (Burges, 1998; Cristianini and Shawe-Taylor, 2000) as classifier. This system has been adjusted with our experiments for obtaining a false identification rate (FIR) of 0%, with a success rate of 90.8% a rejected samples rate of 9.2%. |
---|---|
ISSN: | 1071-6572 2153-0742 |
DOI: | 10.1109/CCST.2005.1594833 |