Normal-Conducting High Current RF Photoinjector for High Power CW FEL

An RF photoinjector capable of producing high average current with low emittance and energy spread is a key enabling technology for high power CW FEL. The design of a 2.5-cell, -mode, 700-MHz normal-conducting RF photoinjector cavity with magnetic emittance compensation is completed. With average gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kurennoy, S.S., Nguyen, D.C., Schrage, D.L., Wood, R.L., Schultheiss, T., Christina, V., Rathke, J., Young, L.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An RF photoinjector capable of producing high average current with low emittance and energy spread is a key enabling technology for high power CW FEL. The design of a 2.5-cell, -mode, 700-MHz normal-conducting RF photoinjector cavity with magnetic emittance compensation is completed. With average gradients of 7, 7, and 5 MV/m in its three accelerating cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and transverse rms emittance below 7 mm-mrad. Electromagnetic modeling has been used extensively to optimize ridge-loaded tapered waveguides and RF couplers, and led to a new, improved coupler iris design. The results, combined with a thermal and stress analysis, show that the challenging problem of cavity cooling can be successfully solved. Fabrication of a demo 100-mA (at 35 MHz bunch repetition rate) photoinjector is underway. The design is scalable to higher average currents by increasing the electron bunch repetition rate, and provides a path to a MW-class FEL. This paper presents the cavity design and details of RF coupler modeling.
ISSN:1944-4680
2152-9582
DOI:10.1109/PAC.2005.1591296