On the resource efficiency of virtual concatenation in next-generation SDH networks

Virtual concatenation (VCAT) is an SDH/SONET network functionality recently standardized by the ITU-T. VCAT provides the flexibility required to efficiently allocate network resources to Ethernet, fiber channel, ESCON and other important data traffic signals. The aim of this paper is to quantify the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kuri, J., Gagnaire, M., Puech, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Virtual concatenation (VCAT) is an SDH/SONET network functionality recently standardized by the ITU-T. VCAT provides the flexibility required to efficiently allocate network resources to Ethernet, fiber channel, ESCON and other important data traffic signals. The aim of this paper is to quantify the savings in network resources provided by VCAT, with respect to contiguous concatenation (CCAT), in SDH/SONET mesh transport networks bearing protected scheduled connection demands (SCDs). We define mathematical models to quantify the add/drop and transmission resources required to instantiate a set of protected SCDs in either a VCAT-capable or a CCAT-capable network. Quantification of transmission resources requires a routing and slot assignment (RSA) problem to be solved. We formulate the RSA problem in VCATand CCAT-capable networks as two different combinatorial optimization problems: RSAv and RSAc, respectively. Protection of the SCDs is considered in the formulations using a shared backup path protection (SBPP) technique. We propose a simulated annealing (SA) based meta-heuristic algorithm to compute approximate solutions to these problems (i.e., solutions whose cost is close to the cost of the optimal ones). The gain in transmission resources and the cost structure of add/drop resources making VCAT-capable networks more economical are analyzed for different realistic traffic types (ESCON, GbE, fibre channel, voice).
DOI:10.1109/ICBN.2005.1589603