Parallel strategies for a multi-criteria GRASP algorithm
This paper proposes different strategies of parallelizing a multi-criteria GRASP (greedy randomized adaptive search problem) algorithm. The parallel GRASP algorithm is applied to the multi-criteria minimum spanning tree problem, which is NP-hard. In this problem, a vector of costs is defined for eac...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes different strategies of parallelizing a multi-criteria GRASP (greedy randomized adaptive search problem) algorithm. The parallel GRASP algorithm is applied to the multi-criteria minimum spanning tree problem, which is NP-hard. In this problem, a vector of costs is defined for each edge of the graph and the goal is to find all the efficient or Pareto optimal spanning trees (solutions). Each process finds a subset of efficient solutions. These subsets are joined using different strategies to obtain the final set of efficient solutions. The multi-criteria GRASP algorithm with the different parallel strategies are tested on complete graphs with n = 20, 30 and 50 nodes and r = 2 and 3 criteria. The computational results show that the proposed parallel algorithms reduce the execution time and the results obtained by the sequential version were improved. |
---|---|
ISSN: | 1522-4902 2691-0632 |
DOI: | 10.1109/SCCC.2005.1587873 |