An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery

A new method in computational intelligence namely artificial immune systems (AIS), which draw inspiration from the vertebrate immune system, have strong capabilities of pattern recognition. Even though AIS have been successfully utilized in several fields, few applications have been reported in remo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2006-02, Vol.44 (2), p.420-431
Hauptverfasser: Yanfei Zhong, Yanfei Zhong, Liangpei Zhang, Liangpei Zhang, Bo Huang, Bo Huang, Pingxiang Li, Pingxiang Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new method in computational intelligence namely artificial immune systems (AIS), which draw inspiration from the vertebrate immune system, have strong capabilities of pattern recognition. Even though AIS have been successfully utilized in several fields, few applications have been reported in remote sensing. Modern commercial imaging satellites, owing to their large volume of high-resolution imagery, offer greater opportunities for automated image analysis. Hence, we propose a novel unsupervised machine-learning algorithm namely unsupervised artificial immune classifier (UAIC) to perform remote sensing image classification. In addition to their nonlinear classification properties, UAIC possesses biological properties such as clonal selection, immune network, and immune memory. The implementation of UAIC comprises two steps: initially, the first clustering centers are acquired by randomly choosing from the input remote sensing image. Then, the classification task is carried out. This assigns each pixel to the class that maximizes stimulation between the antigen and the antibody. Subsequently, based on the class, the antibody population is evolved and the memory cell pool is updated by immune algorithms until the stopping criterion is met. The classification results are evaluated by comparing with four known algorithms: K-means, ISODATA, fuzzy K-means, and self-organizing map. It is shown that UAIC is an adaptive clustering algorithm, which outperforms other algorithms in all the three experiments we carried out.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2005.861548