Synchronization of networks with prescribed degree distributions
We show that the degree distributions of graphs do not suffice to characterize the synchronization of systems evolving on them. We prove that, for any given degree sequence satisfying certain conditions, there exists a connected graph having that degree sequence for which the first nontrivial eigenv...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. 1, Fundamental theory and applications Fundamental theory and applications, 2006-01, Vol.53 (1), p.92-98 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the degree distributions of graphs do not suffice to characterize the synchronization of systems evolving on them. We prove that, for any given degree sequence satisfying certain conditions, there exists a connected graph having that degree sequence for which the first nontrivial eigenvalue of the graph Laplacian is arbitrarily close to zero. Consequently, complex dynamical systems defined on such graphs have poor synchronization properties. The result holds under quite mild assumptions, and shows that there exists classes of random, scale-free, regular, small-world, and other common network architectures which impede synchronization. The proof is based on a construction that also serves as an algorithm for building nonsynchronizing networks having a prescribed degree distribution. |
---|---|
ISSN: | 1549-8328 1057-7122 1558-0806 |
DOI: | 10.1109/TCSI.2005.854604 |