WARP: time warping for periodicity detection

Periodicity mining is used for predicting trends in time series data. Periodicity detection is an essential process in periodicity mining to discover potential periodicity rates. Existing periodicity detection algorithms do not take into account the presence of noise, which is inevitable in almost e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Elfeky, M.G., Aref, W.G., Elmagarmid, A.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Periodicity mining is used for predicting trends in time series data. Periodicity detection is an essential process in periodicity mining to discover potential periodicity rates. Existing periodicity detection algorithms do not take into account the presence of noise, which is inevitable in almost every real-world time series data. In this paper, we tackle the problem of periodicity detection in the presence of noise. We propose a new periodicity detection algorithm that deals efficiently with all types of noise. Based on time warping, the proposed algorithm warps (extends or shrinks) the time axis at various locations to optimally remove the noise. Experimental results show that the proposed algorithm outperforms the existing periodicity detection algorithms in terms of noise resiliency.
ISSN:1550-4786
2374-8486
DOI:10.1109/ICDM.2005.152