Modeling neural network semantics

Summary form only given, as follows. Simplifying assumptions allow identification of the logical equivalent of the computations in a class of neural networks. Higher-order functions encapsulate the semantic content of patterns of signals and synaptic weights by forming formulas in a formal logic. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Healy, M.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary form only given, as follows. Simplifying assumptions allow identification of the logical equivalent of the computations in a class of neural networks. Higher-order functions encapsulate the semantic content of patterns of signals and synaptic weights by forming formulas in a formal logic. This model was applied to capture the semantic content of a simple, hierarchical network that learns to identify the cardinalities of subsets of a finite set.< >
DOI:10.1109/IJCNN.1991.155619