Automatic registration of 3D datasets using Gaussian fields

In this paper we introduce a new 3D automatic registration method based on Gaussian fields and energy minimization. The method defines a simple C/sup /spl infin// energy function, which is convex in a large neighborhood of the alignment parameters; allowing for the use of powerful standard optimizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Boughorbel, F., Koschan, A., Abidi, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we introduce a new 3D automatic registration method based on Gaussian fields and energy minimization. The method defines a simple C/sup /spl infin// energy function, which is convex in a large neighborhood of the alignment parameters; allowing for the use of powerful standard optimization techniques. We show that the size of the region of convergence can be significantly extended reducing the need for close initialization and overcoming local convergence problems of the standard iterative closest point (ICP) algorithms. Furthermore, the Gaussian criterion can be evaluated with linear computational complexity using fast Gauss transform methods, allowing for an efficient implementation of the registration algorithm. Experimental analysis of the technique using real world datasets shows the usefulness as well as the limits of the approach.
ISSN:1522-4880
2381-8549
DOI:10.1109/ICIP.2005.1530514