The influence of contact interface characteristics on vibration-induced fretting degradation
Vibration induced fretting degradation is a widely recognized failure phenomenon; however, the basic mechanisms that control the onset and progression of such fretting behavior are not well understood and are a topic of considerable interest in the electrical connector community. One specific issue...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vibration induced fretting degradation is a widely recognized failure phenomenon; however, the basic mechanisms that control the onset and progression of such fretting behavior are not well understood and are a topic of considerable interest in the electrical connector community. One specific issue is the need for a more detailed understanding of the mechanisms controlling the fretting degradation. The present study addresses these questions and develops answers using the results from a series of experimental tests of sample connectors which are subjected to single-frequency vibration profiles at room temperature. These test specimens are a series of dual-row 16-circuit automotive connectors in which the plating finish and contact normal force are varied. The results are presented and discussed in light of earlier investigations. |
---|---|
ISSN: | 1062-6808 2158-9992 |
DOI: | 10.1109/HOLM.2005.1518227 |