Advanced MEMS and Integrated-Optic Components for Multifunctional Integrated Optical Micromachines
Optical technologies can play a strategic role in improving the performance, functionality, and reducing the mass of various spacecraft technologies, such as true time-delay T/R modules for phased-array antennas and optical sensor systems for satellite navigation and systems status. However, current...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Optical technologies can play a strategic role in improving the performance, functionality, and reducing the mass of various spacecraft technologies, such as true time-delay T/R modules for phased-array antennas and optical sensor systems for satellite navigation and systems status. However, current photonic and fiber-optic systems tend to be bulky relative to the requirements for space applications. Micro integrated-optic circuits increase the integration of optical components on a single substrate, to provide multi-function optical processing and switching similar to electronic integrated circuits. This minimizes the number of external optical interconnections required and sensitivity to external vibrations; maximizing the system information capacity, optical throughput, and reliability, while minimizing the overall system size and weight. This paper considers a systematic development of MEMS integrated-optic circuits on SOI for various space application. A unique blend of MEMS, smart-material and photonic technologies is employed to miniaturize the size of the basic components, while improving on the attainable performance. |
---|---|
DOI: | 10.1109/ICMENS.2004.1508967 |