Reduction of plasma-induced damage during intermetal dielectric deposition in high-density plasma
We have attempted to reduce the plasma-induced damage to the thin gate oxides during intermetal dielectric (IMD) gap-fill process by high-density plasma (HDP) chemical vapor deposition (CVD). It was revealed that the optimization of preheating step could reduce the damage. The H/sub 2/-based HDP CVD...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have attempted to reduce the plasma-induced damage to the thin gate oxides during intermetal dielectric (IMD) gap-fill process by high-density plasma (HDP) chemical vapor deposition (CVD). It was revealed that the optimization of preheating step could reduce the damage. The H/sub 2/-based HDP CVD process was also effective in reducing plasma-induced damage compared with the conventional He-based process. The gate oxide failure was reduced remarkably at the low deposition temperatures less than 400/spl deg/C. Both the significant damage reduction and the excellent gap-fill performance were achieved by the adoption of the phosphorus silicate glass (PSG) using the low temperature H/sub 2/-based HDP CVD technique. |
---|---|
ISSN: | 2381-3555 2691-0462 |
DOI: | 10.1109/ICICDT.2005.1502601 |