Afterlife for silicon: CMOL circuit architectures
This is a brief review of our recent work on architectures for the prospective hybrid CMOS/nanowire/ nanodevice ("CMOL") circuits including digital memories, reconfigurable Boolean-logic circuits, and mixed-signal neuromorphic networks. The basic idea of CMOL circuits is to combine the adv...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This is a brief review of our recent work on architectures for the prospective hybrid CMOS/nanowire/ nanodevice ("CMOL") circuits including digital memories, reconfigurable Boolean-logic circuits, and mixed-signal neuromorphic networks. The basic idea of CMOL circuits is to combine the advantages of CMOS technology (including its flexibility and high fabrication yield) with the extremely high potential density of molecular-scale two-terminal nanodevices. Relatively large critical dimensions of CMOS components and the "bottom-up" approach to nanodevice fabrication may keep CMOL fabrication costs at affordable level. At the same time, the density of active devices in CMOL circuits may be as high as 10/sup 12/ cm/sup 2/ and that they may provide an unparalleled information processing performance, up to 10/sup 20/ operations per cm/sup 2/ per second, at manageable power consumption. |
---|---|
ISSN: | 1944-9399 1944-9380 |
DOI: | 10.1109/NANO.2005.1500722 |