Energy-efficient target coverage in wireless sensor networks

A critical aspect of applications with wireless sensor networks is network lifetime. Power-constrained wireless sensor networks are usable as long as they can communicate sensed data to a processing node. Sensing and communications consume energy, therefore judicious power management and sensor sche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cardei, M., Thai, M.T., Yingshu Li, Weili Wu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A critical aspect of applications with wireless sensor networks is network lifetime. Power-constrained wireless sensor networks are usable as long as they can communicate sensed data to a processing node. Sensing and communications consume energy, therefore judicious power management and sensor scheduling can effectively extend network lifetime. To cover a set of targets with known locations when ground access in the remote area is prohibited, one solution is to deploy the sensors remotely, from an aircraft. The lack of precise sensor placement is compensated by a large sensor population deployed in the drop zone, that would improve the probability of target coverage. The data collected from the sensors is sent to a central node (e.g. cluster head) for processing. In this paper we propose un efficient method to extend the sensor network life time by organizing the sensors into a maximal number of set covers that are activated successively. Only the sensors from the current active set are responsible for monitoring all targets and for transmitting the collected data, while all other nodes are in a low-energy sleep mode. By allowing sensors to participate in multiple sets, our problem formulation increases the network lifetime compared with related work [M. Cardei et al], that has the additional requirements of sensor sets being disjoint and operating equal time intervals. In this paper we model the solution as the maximum set covers problem and design two heuristics that efficiently compute the sets, using linear programming and a greedy approach. Simulation results are presented to verify our approaches.
ISSN:0743-166X
2641-9874
DOI:10.1109/INFCOM.2005.1498475