Design for robustness counter detection CNN with applications

This paper presents a theorem for designing the robustness template parameters of a cellular neural network (CNN) to detect contours in images. The theorem provides parameter inequalities for determining parameter intervals to implement corresponding tasks. As two first examples, the contour detecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hongyan Zang, Guodong Li, Lequan Min, Jianghe Wang, Huiwen Hong, Yanling Liu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a theorem for designing the robustness template parameters of a cellular neural network (CNN) to detect contours in images. The theorem provides parameter inequalities for determining parameter intervals to implement corresponding tasks. As two first examples, the contour detection (CD) CNN has successfully detected contours in a grey pattern image and the Lena portrait. As the third example, the CD CNN has been used to analyze the characteristics of ultrasound B-scan images of six patients' livers. Using polynomials of order 10 approximates the data of the ultrasound B-scan images processed by the CD CNN. Primary analysis seems to display some relationships between the polynomial coefficients and the damage in the patients' livers
DOI:10.1109/ICCCAS.2005.1495266