Direct write contacts for solar cells

Ag, Cu and Ni metallizations were inkjet printed with near vacuum deposition quality. The approach developed can be easily extended to other conductors such as Pt, Pd, Au etc. Thick highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si and PCB have been printed at 100-200 /sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kaydanova, T., van Hest, M.F.A.M., Miedaner, A., Curtis, C.J., Alleman, J.L., Dabney, M.S., Garnett, E., Shaheen, S., Smith, L., Collins, R., Hanoka, J.I., Gabor, A.M., Ginley, D.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ag, Cu and Ni metallizations were inkjet printed with near vacuum deposition quality. The approach developed can be easily extended to other conductors such as Pt, Pd, Au etc. Thick highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si and PCB have been printed at 100-200 /spl deg/C in air and N/sub 2/ respectively. Ag grids were inkjet-printed on Si solar cells and fired through the silicon nitride AR layer at 850 /spl deg/C resulting in 8% cells. Next generation multicomponent inks (including etching agents) have also been developed with improved fire through contacts leading to higher cell efficiencies. PEDOT-PSS polymer based conductors were inkjet printed with conductivity as good or better than that of spin-coated films.
ISSN:0160-8371
DOI:10.1109/PVSC.2005.1488380