Robust stabilization of 2-D uncertain singular Roesser models

This paper discusses the problem of robust stabilization for linear discrete time 2-D singular Roesser models (2-D SRM) with time-invariant norm-bounded parameter uncertainty. The purpose is the design of a state feedback controller such that the resulting closed-loop system is acceptable, jump mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Huiling Xu, Shenyuan Xu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1480 Vol. 2
container_issue
container_start_page 1476
container_title
container_volume 2
creator Huiling Xu
Shenyuan Xu
description This paper discusses the problem of robust stabilization for linear discrete time 2-D singular Roesser models (2-D SRM) with time-invariant norm-bounded parameter uncertainty. The purpose is the design of a state feedback controller such that the resulting closed-loop system is acceptable, jump modes free, stable for all admissible uncertainties. A sufficient condition for the solvability of the robust stabilization problem is derived in terms of bilinear matrix inequalities (BMIs) and an iterative procedure for solving the BMIs is proposed.
doi_str_mv 10.1109/ICARCV.2004.1469067
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1469067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1469067</ieee_id><sourcerecordid>1469067</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9fb3908678a059cfd94e719b0ff801a58a8fb9550e7cfdf61ea36e4b3def842a3</originalsourceid><addsrcrecordid>eNotj81KxDAUhQMiKGOfYDZ5gdabpvlbuJD6NzAgFHU73ExvJNJppGkX-vQWHDhwFh8cvsPYVkAlBLjbXXvftR9VDdBUotEOtLlghTMW1kirlayvWJHzFwAIp61V4prddckveeZ5Rh-H-ItzTCNPgdflA1_GI00zxpHnOH4uA068S5QzTfyUehryDbsMOGQqzr1h70-Pb-1LuX99XnX2ZRRGzaULXjqw2lgE5Y6hdw0Z4TyEYEGgsmiDd0oBmRUGLQilpsbLnoJtapQbtv3fjUR0-J7iCaefw_mk_AM47Ehs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust stabilization of 2-D uncertain singular Roesser models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Huiling Xu ; Shenyuan Xu</creator><creatorcontrib>Huiling Xu ; Shenyuan Xu</creatorcontrib><description>This paper discusses the problem of robust stabilization for linear discrete time 2-D singular Roesser models (2-D SRM) with time-invariant norm-bounded parameter uncertainty. The purpose is the design of a state feedback controller such that the resulting closed-loop system is acceptable, jump modes free, stable for all admissible uncertainties. A sufficient condition for the solvability of the robust stabilization problem is derived in terms of bilinear matrix inequalities (BMIs) and an iterative procedure for solving the BMIs is proposed.</description><identifier>ISBN: 9780780386532</identifier><identifier>ISBN: 0780386531</identifier><identifier>DOI: 10.1109/ICARCV.2004.1469067</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asymptotic stability ; Automatic control ; Control systems ; Linear matrix inequalities ; Robust stability ; Robustness ; State feedback ; Sufficient conditions ; Uncertain systems ; Uncertainty</subject><ispartof>ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004, 2004, Vol.2, p.1476-1480 Vol. 2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1469067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1469067$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huiling Xu</creatorcontrib><creatorcontrib>Shenyuan Xu</creatorcontrib><title>Robust stabilization of 2-D uncertain singular Roesser models</title><title>ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004</title><addtitle>ICARCV</addtitle><description>This paper discusses the problem of robust stabilization for linear discrete time 2-D singular Roesser models (2-D SRM) with time-invariant norm-bounded parameter uncertainty. The purpose is the design of a state feedback controller such that the resulting closed-loop system is acceptable, jump modes free, stable for all admissible uncertainties. A sufficient condition for the solvability of the robust stabilization problem is derived in terms of bilinear matrix inequalities (BMIs) and an iterative procedure for solving the BMIs is proposed.</description><subject>Asymptotic stability</subject><subject>Automatic control</subject><subject>Control systems</subject><subject>Linear matrix inequalities</subject><subject>Robust stability</subject><subject>Robustness</subject><subject>State feedback</subject><subject>Sufficient conditions</subject><subject>Uncertain systems</subject><subject>Uncertainty</subject><isbn>9780780386532</isbn><isbn>0780386531</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAUhQMiKGOfYDZ5gdabpvlbuJD6NzAgFHU73ExvJNJppGkX-vQWHDhwFh8cvsPYVkAlBLjbXXvftR9VDdBUotEOtLlghTMW1kirlayvWJHzFwAIp61V4prddckveeZ5Rh-H-ItzTCNPgdflA1_GI00zxpHnOH4uA068S5QzTfyUehryDbsMOGQqzr1h70-Pb-1LuX99XnX2ZRRGzaULXjqw2lgE5Y6hdw0Z4TyEYEGgsmiDd0oBmRUGLQilpsbLnoJtapQbtv3fjUR0-J7iCaefw_mk_AM47Ehs</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Huiling Xu</creator><creator>Shenyuan Xu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Robust stabilization of 2-D uncertain singular Roesser models</title><author>Huiling Xu ; Shenyuan Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9fb3908678a059cfd94e719b0ff801a58a8fb9550e7cfdf61ea36e4b3def842a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Asymptotic stability</topic><topic>Automatic control</topic><topic>Control systems</topic><topic>Linear matrix inequalities</topic><topic>Robust stability</topic><topic>Robustness</topic><topic>State feedback</topic><topic>Sufficient conditions</topic><topic>Uncertain systems</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Huiling Xu</creatorcontrib><creatorcontrib>Shenyuan Xu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huiling Xu</au><au>Shenyuan Xu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust stabilization of 2-D uncertain singular Roesser models</atitle><btitle>ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004</btitle><stitle>ICARCV</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>1476</spage><epage>1480 Vol. 2</epage><pages>1476-1480 Vol. 2</pages><isbn>9780780386532</isbn><isbn>0780386531</isbn><abstract>This paper discusses the problem of robust stabilization for linear discrete time 2-D singular Roesser models (2-D SRM) with time-invariant norm-bounded parameter uncertainty. The purpose is the design of a state feedback controller such that the resulting closed-loop system is acceptable, jump modes free, stable for all admissible uncertainties. A sufficient condition for the solvability of the robust stabilization problem is derived in terms of bilinear matrix inequalities (BMIs) and an iterative procedure for solving the BMIs is proposed.</abstract><pub>IEEE</pub><doi>10.1109/ICARCV.2004.1469067</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780386532
ispartof ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004, 2004, Vol.2, p.1476-1480 Vol. 2
issn
language eng
recordid cdi_ieee_primary_1469067
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Asymptotic stability
Automatic control
Control systems
Linear matrix inequalities
Robust stability
Robustness
State feedback
Sufficient conditions
Uncertain systems
Uncertainty
title Robust stabilization of 2-D uncertain singular Roesser models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20stabilization%20of%202-D%20uncertain%20singular%20Roesser%20models&rft.btitle=ICARCV%202004%208th%20Control,%20Automation,%20Robotics%20and%20Vision%20Conference,%202004&rft.au=Huiling%20Xu&rft.date=2004&rft.volume=2&rft.spage=1476&rft.epage=1480%20Vol.%202&rft.pages=1476-1480%20Vol.%202&rft.isbn=9780780386532&rft.isbn_list=0780386531&rft_id=info:doi/10.1109/ICARCV.2004.1469067&rft_dat=%3Cieee_6IE%3E1469067%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1469067&rfr_iscdi=true