Modeling a simple inverted pendulum using a model-based dynamic recurrent neural network

A model-based dynamic recurrent neural network (MBDRNN) is used in this paper to improve the linearized model of a simple inverted pendulum (SIP). The MBDRNN's equations start as those of the linearized SIP model. Then, through back-propagation-based training, the MBDRNN's activation funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karam, M., Zohdy, M.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue
container_start_page 78
container_title
container_volume
creator Karam, M.
Zohdy, M.A.
description A model-based dynamic recurrent neural network (MBDRNN) is used in this paper to improve the linearized model of a simple inverted pendulum (SIP). The MBDRNN's equations start as those of the linearized SIP model. Then, through back-propagation-based training, the MBDRNN's activation functions' weights are modified with the objective of improving the linearized SIP model. Simulation results show that the MBDRRN effectively improved the linearized model. By tuning several of the MBDRNN parameters, an improved configuration was found yielding a satisfactory' small modeling approximation error.
doi_str_mv 10.1109/SSST.2005.1460881
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1460881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1460881</ieee_id><sourcerecordid>1460881</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-294b0bec9d02f58a3b767544df2affdce394c3d897f37524368edb2167f1b9803</originalsourceid><addsrcrecordid>eNotkMtOwzAURC0eEmnhAxAb_0DC9Su2l6iCglTEokViVznxNTIkaeUkoP49Qe1qFnM00hlCbhkUjIG9X6_Xm4IDqILJEoxhZyTjrGS5YUKdkxloA8IYMPaCZABW5txYc0Vmff8FAGXJVUY-Xncem9h9Ukf72O4bpLH7wTSgp3vs_NiMLR37I9D-s3nl-qn0h861saYJ6zEl7Aba4ZhcM8Xwu0vf1-QyuKbHm1POyfvT42bxnK_eli-Lh1UemVZDzq2soMLaeuBBGScqXWolpQ_cheBrFFbWwhurg9CKS1Ea9NWkqQOr7CQ4J3fH3YiI232KrUuH7ekR8QdyE1RX</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling a simple inverted pendulum using a model-based dynamic recurrent neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Karam, M. ; Zohdy, M.A.</creator><creatorcontrib>Karam, M. ; Zohdy, M.A.</creatorcontrib><description>A model-based dynamic recurrent neural network (MBDRNN) is used in this paper to improve the linearized model of a simple inverted pendulum (SIP). The MBDRNN's equations start as those of the linearized SIP model. Then, through back-propagation-based training, the MBDRNN's activation functions' weights are modified with the objective of improving the linearized SIP model. Simulation results show that the MBDRRN effectively improved the linearized model. By tuning several of the MBDRNN parameters, an improved configuration was found yielding a satisfactory' small modeling approximation error.</description><identifier>ISSN: 0094-2898</identifier><identifier>ISBN: 0780388089</identifier><identifier>ISBN: 9780780388086</identifier><identifier>EISSN: 2161-8135</identifier><identifier>DOI: 10.1109/SSST.2005.1460881</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation error ; Computer networks ; Mean square error methods ; Modeling ; Neural networks ; Nonlinear dynamical systems ; Nonlinear equations ; Nonlinear systems ; Recurrent neural networks ; Systems engineering and theory</subject><ispartof>Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, 2005. SSST '05, 2005, p.78-82</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1460881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1460881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karam, M.</creatorcontrib><creatorcontrib>Zohdy, M.A.</creatorcontrib><title>Modeling a simple inverted pendulum using a model-based dynamic recurrent neural network</title><title>Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, 2005. SSST '05</title><addtitle>SSST</addtitle><description>A model-based dynamic recurrent neural network (MBDRNN) is used in this paper to improve the linearized model of a simple inverted pendulum (SIP). The MBDRNN's equations start as those of the linearized SIP model. Then, through back-propagation-based training, the MBDRNN's activation functions' weights are modified with the objective of improving the linearized SIP model. Simulation results show that the MBDRRN effectively improved the linearized model. By tuning several of the MBDRNN parameters, an improved configuration was found yielding a satisfactory' small modeling approximation error.</description><subject>Approximation error</subject><subject>Computer networks</subject><subject>Mean square error methods</subject><subject>Modeling</subject><subject>Neural networks</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Recurrent neural networks</subject><subject>Systems engineering and theory</subject><issn>0094-2898</issn><issn>2161-8135</issn><isbn>0780388089</isbn><isbn>9780780388086</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtOwzAURC0eEmnhAxAb_0DC9Su2l6iCglTEokViVznxNTIkaeUkoP49Qe1qFnM00hlCbhkUjIG9X6_Xm4IDqILJEoxhZyTjrGS5YUKdkxloA8IYMPaCZABW5txYc0Vmff8FAGXJVUY-Xncem9h9Ukf72O4bpLH7wTSgp3vs_NiMLR37I9D-s3nl-qn0h861saYJ6zEl7Aba4ZhcM8Xwu0vf1-QyuKbHm1POyfvT42bxnK_eli-Lh1UemVZDzq2soMLaeuBBGScqXWolpQ_cheBrFFbWwhurg9CKS1Ea9NWkqQOr7CQ4J3fH3YiI232KrUuH7ekR8QdyE1RX</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Karam, M.</creator><creator>Zohdy, M.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Modeling a simple inverted pendulum using a model-based dynamic recurrent neural network</title><author>Karam, M. ; Zohdy, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-294b0bec9d02f58a3b767544df2affdce394c3d897f37524368edb2167f1b9803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Approximation error</topic><topic>Computer networks</topic><topic>Mean square error methods</topic><topic>Modeling</topic><topic>Neural networks</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Recurrent neural networks</topic><topic>Systems engineering and theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Karam, M.</creatorcontrib><creatorcontrib>Zohdy, M.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karam, M.</au><au>Zohdy, M.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling a simple inverted pendulum using a model-based dynamic recurrent neural network</atitle><btitle>Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, 2005. SSST '05</btitle><stitle>SSST</stitle><date>2005</date><risdate>2005</risdate><spage>78</spage><epage>82</epage><pages>78-82</pages><issn>0094-2898</issn><eissn>2161-8135</eissn><isbn>0780388089</isbn><isbn>9780780388086</isbn><abstract>A model-based dynamic recurrent neural network (MBDRNN) is used in this paper to improve the linearized model of a simple inverted pendulum (SIP). The MBDRNN's equations start as those of the linearized SIP model. Then, through back-propagation-based training, the MBDRNN's activation functions' weights are modified with the objective of improving the linearized SIP model. Simulation results show that the MBDRRN effectively improved the linearized model. By tuning several of the MBDRNN parameters, an improved configuration was found yielding a satisfactory' small modeling approximation error.</abstract><pub>IEEE</pub><doi>10.1109/SSST.2005.1460881</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0094-2898
ispartof Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, 2005. SSST '05, 2005, p.78-82
issn 0094-2898
2161-8135
language eng
recordid cdi_ieee_primary_1460881
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation error
Computer networks
Mean square error methods
Modeling
Neural networks
Nonlinear dynamical systems
Nonlinear equations
Nonlinear systems
Recurrent neural networks
Systems engineering and theory
title Modeling a simple inverted pendulum using a model-based dynamic recurrent neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20a%20simple%20inverted%20pendulum%20using%20a%20model-based%20dynamic%20recurrent%20neural%20network&rft.btitle=Proceedings%20of%20the%20Thirty-Seventh%20Southeastern%20Symposium%20on%20System%20Theory,%202005.%20SSST%20'05&rft.au=Karam,%20M.&rft.date=2005&rft.spage=78&rft.epage=82&rft.pages=78-82&rft.issn=0094-2898&rft.eissn=2161-8135&rft.isbn=0780388089&rft.isbn_list=9780780388086&rft_id=info:doi/10.1109/SSST.2005.1460881&rft_dat=%3Cieee_6IE%3E1460881%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1460881&rfr_iscdi=true