Modeling a simple inverted pendulum using a model-based dynamic recurrent neural network

A model-based dynamic recurrent neural network (MBDRNN) is used in this paper to improve the linearized model of a simple inverted pendulum (SIP). The MBDRNN's equations start as those of the linearized SIP model. Then, through back-propagation-based training, the MBDRNN's activation funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karam, M., Zohdy, M.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A model-based dynamic recurrent neural network (MBDRNN) is used in this paper to improve the linearized model of a simple inverted pendulum (SIP). The MBDRNN's equations start as those of the linearized SIP model. Then, through back-propagation-based training, the MBDRNN's activation functions' weights are modified with the objective of improving the linearized SIP model. Simulation results show that the MBDRRN effectively improved the linearized model. By tuning several of the MBDRNN parameters, an improved configuration was found yielding a satisfactory' small modeling approximation error.
ISSN:0094-2898
2161-8135
DOI:10.1109/SSST.2005.1460881