On the ratio of two random variables
The probability P(k) that two non-negative random variables X and Y are within K ≡ 20 log 10 k dB of each other is investigated. When the joint probability density function is symmetric in X and Y, then P(k) = 2F Z (k) - 1, where F Z is the cumulative distribution function of the ratio Z ≡ (X/Y). Fi...
Gespeichert in:
Veröffentlicht in: | Proceedings of the IEEE 1967, Vol.55 (2), p.247-248 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The probability P(k) that two non-negative random variables X and Y are within K ≡ 20 log 10 k dB of each other is investigated. When the joint probability density function is symmetric in X and Y, then P(k) = 2F Z (k) - 1, where F Z is the cumulative distribution function of the ratio Z ≡ (X/Y). Finally, P(k) is evaluated for the case in which X and Y are correlated Rayleigh variates. |
---|---|
ISSN: | 0018-9219 1558-2256 |
DOI: | 10.1109/PROC.1967.5471 |