On the ratio of two random variables

The probability P(k) that two non-negative random variables X and Y are within K ≡ 20 log 10 k dB of each other is investigated. When the joint probability density function is symmetric in X and Y, then P(k) = 2F Z (k) - 1, where F Z is the cumulative distribution function of the ratio Z ≡ (X/Y). Fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 1967, Vol.55 (2), p.247-248
1. Verfasser: Zeger, A.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The probability P(k) that two non-negative random variables X and Y are within K ≡ 20 log 10 k dB of each other is investigated. When the joint probability density function is symmetric in X and Y, then P(k) = 2F Z (k) - 1, where F Z is the cumulative distribution function of the ratio Z ≡ (X/Y). Finally, P(k) is evaluated for the case in which X and Y are correlated Rayleigh variates.
ISSN:0018-9219
1558-2256
DOI:10.1109/PROC.1967.5471