Design, fabrication, and characterization of a submicroelectromechanical resonator with monolithically integrated CMOS readout circuit
In this paper, we report on the main aspects of the design, fabrication, and performance of a microelectromechanical system constituted by a mechanical submicrometer scale resonator (cantilever) and the readout circuitry used for monitoring its oscillation through the detection of the capacitive cur...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2005-06, Vol.14 (3), p.508-519 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we report on the main aspects of the design, fabrication, and performance of a microelectromechanical system constituted by a mechanical submicrometer scale resonator (cantilever) and the readout circuitry used for monitoring its oscillation through the detection of the capacitive current. The CMOS circuitry is monolithically integrated with the mechanical resonator by a technology that allows the combination of standard CMOS processes and novel nanofabrication methods. The integrated system constitutes an example of a submicroelectromechanical system to be used as a cantilever-based mass sensor with both a high sensitivity and a high spatial resolution (on the order of 10/sup -18/ g and 300 nm, respectively). Experimental results on the electrical characterization of the resonance curve of the cantilever through the integrated CMOS readout circuit are shown. |
---|---|
ISSN: | 1057-7157 1941-0158 |
DOI: | 10.1109/JMEMS.2005.844845 |